精英家教网 > 高中数学 > 题目详情

设函数)。
⑴若,求上的最大值和最小值;
⑵若对任意,都有,求的取值范围;
⑶若上的最大值为,求的值。

(1)最大值为3,最小值为-1;(2);(3)

解析试题分析:(1)是三次函数,要求它的最大值和最小值一般利用导数来求,具体的就是令,求出,再讨论相应区间的单调性,就可判断出函数什么时候取最大值,什么时候取最小值;(2)要求的取值范围,题中没有其他的信息,因此我们首先判断出的初始范围,由已知有,得出,而此时上的单调性不确定,通过讨论单调性,求出上的最大值和最小值,为什么要求最大值和最小值呢?原因就在于题设条件等价于最大值与最小值的差,这样就有求出的取值范围了;(3)对上的最大值为的处理方法,同样我们用特殊值法,首先,即,由这两式可得,而特殊值,又能得到,那么只能有,把代入,就可求出
试题解析:(1),∴,         2分
∴在内,,在内,
∴在内,为增函数,在内,为减函数,
的最大值为,最小值为,         4分
(2)∵对任意,∴
从而有,∴.         6分
,∴内为减函数,在内为增函数,只需,则
的取值范围是          10分[
(3)由②,
①加②得又∵      14分
代入①②得               16分
考点:(1)函数的最值;(2)导数的应用;(3)含绝对值的函数的最大值与不等式的综合知识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,且对于任意恒成立,试确定实数的取值范围;
(Ⅱ)设函数,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中).
(Ⅰ)若的极值点,求的值;
(Ⅱ)在(Ⅰ)的条件下,解不等式
(Ⅲ)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,若时,有极小值
(1)求实数的取值;
(2)若数列中,,求证:数列的前项和
(3)设函数,若有极值且极值为,则是否具有确定的大小关系?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.若函数依次在处取到极值.
(1)求的取值范围;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(Ⅰ)若曲线处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数, e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;
(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数的极值,并指出是极大值还是极小值;
(Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意,总存在,使得.

查看答案和解析>>

同步练习册答案