设函数(,)。
⑴若,求在上的最大值和最小值;
⑵若对任意,都有,求的取值范围;
⑶若在上的最大值为,求的值。
(1)最大值为3,最小值为-1;(2);(3),.
解析试题分析:(1)是三次函数,要求它的最大值和最小值一般利用导数来求,具体的就是令,求出,再讨论相应区间的单调性,就可判断出函数什么时候取最大值,什么时候取最小值;(2)要求的取值范围,题中没有其他的信息,因此我们首先判断出的初始范围,由已知有,得出,而此时在上的单调性不确定,通过讨论单调性,求出在上的最大值和最小值,为什么要求最大值和最小值呢?原因就在于题设条件等价于最大值与最小值的差,这样就有求出的取值范围了;(3)对在上的最大值为的处理方法,同样我们用特殊值法,首先,即,由这两式可得,而特殊值,又能得到,那么只能有,把代入和,就可求出.
试题解析:(1),∴, 2分
∴在内,,在内,,
∴在内,为增函数,在内,为减函数,
∴的最大值为,最小值为, 4分
(2)∵对任意有,∴,
从而有,∴. 6分
又,∴在,内为减函数,在内为增函数,只需,则,
∴的取值范围是 10分[
(3)由知①②,
①加②得又∵∴∴ 14分
将代入①②得∴ 16分
考点:(1)函数的最值;(2)导数的应用;(3)含绝对值的函数的最大值与不等式的综合知识.
科目:高中数学 来源: 题型:解答题
设函数,若时,有极小值,
(1)求实数的取值;
(2)若数列中,,求证:数列的前项和;
(3)设函数,若有极值且极值为,则与是否具有确定的大小关系?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,.
(Ⅰ)若曲线在与处的切线相互平行,求的值及切线斜率;
(Ⅱ)若函数在区间上单调递减,求的取值范围;
(Ⅲ)设函数的图像C1与函数的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=aex,g(x)=lnx-lna,其中a为常数, e=2.718…,且函数y=f(x)和y=g(x)的图像在它们与坐标轴交点处的切线互相平行.
(1)求常数a的值;
(2)若存在x使不等式>成立,求实数m的取值范围;
(3)对于函数y=f(x)和y=g(x)公共定义域内的任意实数x0,我们把|f(x0)-g(x0)|的值称为两函数在x0处的偏差.求证:函数y=f(x)和y=g(x)在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com