精英家教网 > 高中数学 > 题目详情
精英家教网如图为函数f(x)=tan(
π
4
x-
π
2
)的部分图象,点A为函数f(x)在y轴右侧的第一个零点,点B在函数f(x)图象上,它的纵坐标为1,直线AB的倾斜角等于
 
分析:根据正切函数的性质求出A,B的坐标,利用直线斜率和倾斜角之间的关系即可得到结论.
解答:解:由
π
4
x-
π
2
=kπ,得x=2+4k,k∈Z,
∵点A为函数f(x)在y轴右侧的第一个零点,
∴当k=0时,x=2,即A(2,0).
由f(x)=tan(
π
4
x-
π
2
)=1,
π
4
x-
π
2
=
π
4
,即x=3,
∴B(3,1),
直线AB的斜率k=
1-0
3-2
=1

即直线AB的倾斜角等于45°,
故答案为:45°.
点评:本题主要考查直线斜率和倾斜角的计算,根据正切函数求出A,B的坐标是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图为函数f(x)=
x
(0<x<1)的图象,其在点M(t,f(t))处的切线为l,l与y轴和直线y=1分别交于点P、Q,点N(0,1),若△PQN的面积为b时的点M恰好有两个,则b的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

18、如图为函数f(x)的图象,f′(x)为函数f(x)的导函数,则不等式x•f′(x)<0的解集为
(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图为函数f(x)=ax3+bx2+cx+d的图象,f′(x)为函数f(x)的导函数,则不等式x•f′(x)<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为函数f(x)=ax3+bx2+cx+d的图象,f′(x)为函数f(x)的导函数,则不等式x•f′(x)<0的解集为(  )

查看答案和解析>>

同步练习册答案