精英家教网 > 高中数学 > 题目详情

已知函数,函数,下列关于这两个函数的叙述正确的是(  )                                               

A.是奇函数,是奇函数    B.是奇函数,是偶函数

C.是偶函数,是奇函数        D.是偶函数,是偶函数

 

【答案】

B

【解析】

试题分析:易知的定义域都为R,又,所以是奇函数,是偶函数,因此选B。

考点:函数的性质:奇偶性。

点评:判断一个函数的奇偶性有两步:①求函数的定义域,判断函数的定义域关于原点对称;②判断的关系。尤其是做大题时不要忘记求函数的定义域。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示,给出关于f(x)的下列命题:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函数y=f(x)在x=2取到极小值;
②函数f(x)在[0,1]是减函数,在[1,2]是增函数;
③当1<a<2时,函数y=f(x)-a有4个零点;
④如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最小值为0.
其中所有正确命题是
①③④
①③④
(写出正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是
.?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin
x
2
 ,  x∈R
,将函数y=f(x)图象上所有点的横坐标缩短为原来的
1
2
倍(纵坐不变),得到函数g(x)的图象,则关于f(x)•g(x)有下列命题,其中真命题的个数是(  )
①函数y=f(x)•g(x)是奇函数;
②函数y=f(x)•g(x)不是周期函数;
③函数y=f(x)•g(x)的图象关于点(π,0)中心对称;
④函数y=f(x)•g(x)的最大值为
3
3

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省宁波市八校联考高一(上)数学试卷(解析版) 题型:填空题

已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-6)=-2,当x1,x2∈[0,3]且x1≠x2时,都有,则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为直线x=-6;
③函数y=f(x)在[-9,-6]上为减函数;
④函数f(x)在[-9,9]上有4个零点,上述命题中的所有正确命题的序号是    .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2014届山东省淄博市高二下学期期中模块检测文科数学试卷(解析版) 题型:选择题

已知函数的定义域为,部分对应值如下表:

的导函数的图象如图所示,

则下列关于函数的命题:

① 函数是周期函数;

② 函数是减函数;

③ 如果当时,的最大值是2,那么的最大值为4;

④ 当时,函数有4个零点。

其中真命题的个数是 (    )

A.4个             B.3个              C.2个              D.1个

 

查看答案和解析>>

同步练习册答案