¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢Ù¶ÔÈÎÒâÁ½¸öÏòÁ¿
a
£¬
b
¶¼ÓÐ|
a
b
|=|
a
|•|
b
|£»
¢ÚÈô
a
£¬
b
ÊÇÁ½¸ö²»¹²ÏßµÄÏòÁ¿£¬ÇÒ
AB
=¦Ë1
a
+
b
£¬
AC
=
a
+¦Ë2
b
(¦Ë1£¬¦Ë2¡ÊR)
£¬ÔòA¡¢B¡¢C¹²Ïß?¦Ë1¦Ë2=-1£»
¢ÛÈôÏòÁ¿
a
=(cos¦Á£¬sin¦Á)£¬
b
=(cos¦Â£¬sin¦Â)
£¬Ôò
a
+
b
Óë
a
-
b
µÄ¼Ð½ÇΪ90¡ã£»
¢ÜÈôÏòÁ¿
a
¡¢
b
Âú×ã|
a
|=3£¬|
b
|=4£¬|
a
+
b
|=
13
£¬Ôò
a
£¬
b
µÄ¼Ð½ÇΪ60¡ã£®
ÒÔÉÏÃüÌâÖУ¬´íÎóÃüÌâµÄÐòºÅÊÇ
 
£®
·ÖÎö£º¸ù¾ÝÁ½¸öÏòÁ¿ÊýÁ¿»ýµÄ¹«Ê½¿ÉÖªµÚÒ»¸öÃüÌâÊÇ´íÎóµÄ£¬¸ù¾ÝÈýµã¹²ÏߵijäÒªÌõ¼þ¿ÉÖªÁ½¸öϵÊýÖ®»ýÊÇ1£¬¶ø²»ÊÇ-1£¬ÀûÓÃÏòÁ¿µÄÊýÁ¿»ý×ö³öµÚÈý¸öÊÇÕýÈ·µÄ£¬°ÑÁ½¸öÏòÁ¿µÄºÍµÄÄ£³¤Á½±ßƽ·½£¬´úÈëÒÑÖªÏòÁ¿µÄÄ£³¤£¬µÃµ½¼Ð½ÇÊÇ120¡ã£®
½â´ð£º½â£º¡ßÈÎÒâÁ½¸öÏòÁ¿
a
£¬
b
¶¼ÓÐ|
a
b
|=|
a
|•|
b
|cos¦È£»
¡à¢ÙsÊÇ´íÎóµÄ£¬
ҪʹµÄA¡¢B¡¢C¹²Ïߣ¬ÐèÒªÓÐ
AB
=¦Ë
AC
£¬
¼´¦Ë1
a
+
b
=¦Ë(
a
+¦Ë2
b
)
£¬
¡à¦Ë1=¦Ë£¬¦Ë¦Ë2=1£¬
¡à¦Ë1¦Ë2=1£¬
¡à¢Ú´íÎó£¬
¡ß£¨
a
+
b
£©•£¨
a
-
b
£©=
a
2
-
b
2
=0£¬
¡à
a
+
b
Óë
a
-
b
µÄ¼Ð½ÇΪ90¡ã
¡à¢ÛÕýÈ·£¬
ÏòÁ¿
a
¡¢
b
Âú×ã|
a
|=3£¬|
b
|=4£¬|
a
+
b
|=
13
£¬
Ôò
a
£¬
b
µÄ¼Ð½ÇΪ120¡ã
¢Ü´íÎó£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü
µãÆÀ£º±¾Ì⿼²é×ø±êÐÎʽµÄÏòÁ¿µÄÊýÁ¿»ýºÍÏòÁ¿µÄ¼õ·¨ºÍÊý³ËÔËË㣬ÒÔ¼°ÏòÁ¿µÄÄ£³¤ÔËË㣬ÊÇÒ»¸ö»ù´¡Ì⣬ÔÚ½âÌâʱÖ÷ÒªÓ¦ÓÃÏòÁ¿µÄ×ø±êÐÎʽ£¬ÕâÑùÌâÄ¿±ä³É¼òµ¥µÄÊý×ÖµÄÔËË㣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢ÒÑÖªÊýÁÐA£ºa1£¬a2£¬¡­£¬an£¨0¡Üa1£¼a2£¼¡­£¼an£¬n¡Ý3£©¾ßÓÐÐÔÖÊP£º¶ÔÈÎÒâi£¬j£¨1¡Üi¡Üj¡Ün£©£¬aj+aiÓëaj-aiÁ½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»Ïî¡¢ÏÖ¸ø³öÒÔÏÂËĸöÃüÌ⣺¢ÙÊýÁÐ0£¬1£¬3¾ßÓÐÐÔÖÊP£»¢ÚÊýÁÐ0£¬2£¬4£¬6¾ßÓÐÐÔÖÊP£»¢ÛÈôÊýÁÐA¾ßÓÐÐÔÖÊP£¬Ôòa1=0£»¢ÜÈôÊýÁÐa1£¬a2£¬a3£¨0¡Üa1£¼a2£¼a3£©¾ßÓÐÐÔÖÊP£¬Ôòa1+a3=2a2£¬ÆäÖÐÕæÃüÌâÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨ÒåƽÃæÏòÁ¿Ö®¼äµÄÒ»ÖÖÔËËã¡°*¡±ÈçÏ£º¶ÔÈÎÒâµÄ
a
=(m£¬n)£¬
b
=(p£¬q)
£¬Áî
a
*
b
=mq-np
£®¸ø³öÒÔÏÂËĸöÃüÌ⣺£¨1£©Èô
a
Óë
b
¹²Ïߣ¬Ôò
a
*
b
=0
£»£¨2£©
a
*
b
=
b
*
a
£»£¨3£©¶ÔÈÎÒâµÄ¦Ë¡ÊR£¬ÓÐ(¦Ë
a
)*
b
=¦Ë(
a
*
b
)
£¨4£©(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
£®£¨×¢£ºÕâÀï
a
b
Ö¸
a
Óë
b
µÄÊýÁ¿»ý£©ÔòÆäÖÐËùÓÐÕæÃüÌâµÄÐòºÅÊÇ£¨¡¡¡¡£©
A¡¢£¨1£©£¨2£©£¨3£©
B¡¢£¨2£©£¨3£©£¨4£©
C¡¢£¨1£©£¨3£©£¨4£©
D¡¢£¨1£©£¨2£©£¨4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬Õý·½ÌåABCD-A¡äB¡äC¡äD¡äµÄÀⳤΪ1£¬E¡¢F·Ö±ðÊÇÀâAA¡ä£¬CC¡äµÄÖе㣬¹ýÖ±ÏßEFµÄƽÃæ·Ö±ðÓëÀâBB¡ä¡¢DD¡ä½»ÓÚM¡¢N£¬ÉèBM=x£¬x¡Ê[0£¬1]£¬¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢ÙƽÃæMENF¡ÍƽÃæBDD¡äB¡ä£»
¢Úµ±ÇÒ½öµ±x=
12
ʱ£¬ËıßÐÎMENFµÄÃæ»ý×îС£»
¢ÛËıßÐÎMENFÖܳ¤l=f£¨x£©£¬x¡Ê0£¬1]Êǵ¥µ÷º¯Êý£»
¢ÜËÄÀâ׶C¡ä-MENFµÄÌå»ýv=h£¨x£©Îª³£º¯Êý£»
ÒÔÉÏÃüÌâÖÐÕæÃüÌâµÄÐòºÅΪ
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÕûÊýmÂú×ã²»µÈʽx-
1
2
¡Üm£¼x+
1
2
£¬x¡ÊR
£¬Ôò³ÆmΪxµÄ¡°Ç×ÃÜÕûÊý¡±£¬¼Ç×÷{x}£¬¼´{x}=m£¬ÒÑÖªº¯Êýf£¨x£©x-{x}£®¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢Ùº¯Êýy=f£¨x£©£¬x¡ÊRÊÇÖÜÆÚº¯ÊýÇÒÆä×îСÕýÖÜÆÚΪ1£»
¢Úº¯Êýy=f£¨x£©£¬x¡ÊRµÄͼÏó¹ØÓڵ㣨k£¬0£©£¬k¡ÊZÖÐÐĶԳƣ»
¢Ûº¯Êýy=f£¨x£©£¬x¡ÊRÔÚ[-
1
2
£¬
1
2
]
Éϵ¥µ÷µÝÔö£»
¢Ü·½³Ìf(x)=
1
2
sin(¦Ð•x)
ÔÚ[-2£¬2]ÉϹ²ÓÐ7¸ö²»ÏàµÈµÄʵÊý¸ù£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ü
¢Ù¢Ü
£®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢Ùº¯Êýf(x)=sinx+2xf¡ä(
¦Ð
3
)
£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬Áîa=log32£¬b=
1
2
£¬Ôòf£¨a£©£¼f£¨b£©
¢ÚÈôf(x+2)+
1
f(x)
=0
£¬Ôòº¯Êýy=f£¨x£©ÊÇÒÔ4ΪÖÜÆÚµÄÖÜÆÚº¯Êý£»
¢ÛÔÚÊýÁÐ{an}ÖУ¬a1=1£¬SnÊÇÆäÇ°nÏîºÍ£¬ÇÒÂú×ãSn+1=
1
2
Sn+2£¬ÔòÊýÁÐ{an}ÊǵȱÈÊýÁУ»
¢Üº¯Êýy=3x+3-x£¨x£¼0£©µÄ×îСֵΪ2£®
ÔòÕýÈ·ÃüÌâµÄÐòºÅÊÇ
¢Ù¢Ú
¢Ù¢Ú
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸