精英家教网 > 高中数学 > 题目详情
已知矩阵MN,在平面直角坐标系中,设直线2x-y+1=0在矩阵MN对应的变换作用下得到的曲线F,求曲线F的方程.
2x+y+1=0
由题设得MN.设(x,y)是直线2x-y+1=0上任意一点,
点(x,y)在矩阵MN对应的变换作用下变为(x′,y′),
则有,即
所以.
因为点(x,y)在直线2x-y+1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.
所以曲线F的方程为2x+y+1=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在复平面内,复数z1,z2对应的向量分别是
OA
OB
,则复数
z1
z2
对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩阵,则矩阵A的逆矩阵为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用解方程组的方法求下列矩阵M的逆矩阵.
(1)M;(2)M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l在变换M作用下得到了直线m:2x-y=4,求l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二阶矩阵M对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).
(1)求矩阵M
(2)若直线l在此变换下所变换成的直线的解析式l′:11x-3y-68=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(1)求矩阵M的特征值及相应的特征向量.
(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对任意的实数,矩阵运算都成立,则          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点(-1,k)在伸压变换矩阵之下的对应点的坐标为(-2,-4),求m、k的值.

查看答案和解析>>

同步练习册答案