精英家教网 > 高中数学 > 题目详情

如图在长方体,的一个.

(1)证明:

(2)的中点时求点到面的距离

(3)线段的长为何值时二面角的大小为.

 

1)详见解析;(2;(3.

【解析】

试题分析:解决立体几何中的垂直、距离及空间角,有几何法与空间向量法,其中几何法,需要学生具备较强的空间想象能力及扎实的立体几何理论知识;向量法,则要求学生能根据题意准确建立空间直角坐标系,写出有效点、有效向量的坐标必须准确无误,然后将立体几何中的问题的求解转化为坐标的运算问题,这也需要学生具备较好的代数运算能力.

几何法:(1)要证,只须证明平面,然后根据线面垂直的判定定理进行寻找条件即可;(2)运用的关系进行计算即可求出点到面的距离;(3)先作,连接,然后充分利用长方体的性质证明为二面角的平面角,最后根据所给的棱长与角度进行计算即可得到线段的长.

向量法: (1)建立空间坐标分别求出的坐标利用数量积等于零即可(2)的中点时求点到平面的距离只需找平面的一条过点的斜线段在平面的法向量上的投影即可(3)因为平面的一个法向量为只需求出平面的法向量然后利用二面角为根据夹角公式求出即可.

试题解析:解法一:(1)平面,∴,又∵,∴平面 4

(2)等体积法:由已知条件可得,,所以为等腰三角形

=,设点到平面的距离,根据可得,,即,解得 8

(3)过点,连接

因为平面,所以,又,所以平面

为二面角的平面角

所以

可得 14

法二: 为坐标原点,直线分别为,建立空间直角坐标系

,,
(1),,
(2)因为的中点,,从而, ,设平面的法向量为, 也即,,从而,所以点到平面的距离为
(3)设平面的法向量, , ,,,依题意得: , ,解得 (不合,舍去),

,二面角的大小为.

考点:1.空间中的垂直问题;2.空间距离;3.空间角;4. 空间向量在立体几何中应用.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届山东威海高二上学期期末考试理科数学试卷(解析版) 题型:选择题

若“”为真命题,则下列命题一定为假命题的是( )

ABCD

 

查看答案和解析>>

科目:高中数学 来源:2015届安徽蚌埠高二第一学期期末考试理科数学试卷(解析版) 题型:选择题

A31),B-12)若∠ACB的平分线方程为,则AC所在的直线方程为( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届安徽蚌埠高二第一学期期末考试文科数学试卷(解析版) 题型:填空题

直线的倾斜角的大小是

 

查看答案和解析>>

科目:高中数学 来源:2015届安徽蚌埠高二第一学期期末考试文科数学试卷(解析版) 题型:选择题

已知为两条不同直线,为两个不同平面,给出下列命题:( )

其中的正确命题序号

A③④ B②③

C①② D①②③④

 

查看答案和解析>>

科目:高中数学 来源:2015届四川资阳市高二第一学期期末考试理科数学试卷(解析版) 题型:解答题

已知三点.

(1)的夹角;

(2)方向上的投影.

 

查看答案和解析>>

科目:高中数学 来源:2015届四川资阳市高二第一学期期末考试理科数学试卷(解析版) 题型:选择题

执行如图所示的程序框图若输入,则输出的( )

A B C D

 

查看答案和解析>>

科目:高中数学 来源:2015届四川资阳市高二第一学期期末考试文科数学试卷(解析版) 题型:填空题

一个几何体的三视图如图所示则这个几何体的表面积与其外接球面积之比为_______.

 

 

查看答案和解析>>

科目:高中数学 来源:2015届吉林省吉林市高二上学期期末文数学试卷(解析版) 题型:填空题

是椭圆上的一点,是焦点,,则△的面积是 .

 

查看答案和解析>>

同步练习册答案