精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A、B、C的对边分别为a、b、c,且
(1)求角
(2)若,求面积S的最大值.
(1);(2).

试题分析:(1)由式子的结构特征,很自然联想到余弦定理,将其化为关于角的三角函数,由其函数值则可求出角;(2)由第(1)题的结果,可知,再由条件可得,,利用基本不等式可求出的最大值,进一步可得三角形面积的最大值.
试题解析:
(1)由已知得,所以 ,
又在锐角中,所以
(2)因为,所以 
 
 
所以面积的最大值等于
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a,b,c分别为△ABC三个内角A,B,C的对边,
(Ⅰ)求B;
(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,某饲养场要建造一间两面靠墙的三角形露天养殖场,已知已有两面墙的夹角为60°(即),现有可供建造第三面围墙的材料60米(两面墙的长均大于60米),为了使得小老虎能健康成长,要求所建造的三角形露天活动室尽可能大,记

(1)问当为多少时,所建造的三角形露天活动室的面积最大?
(2)若饲养场建造成扇形,养殖场的面积能比(1)中的最大面积更大?说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若的值域;
(Ⅱ)△ABC中,角A,B,C的对边为a,b,c,若的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,分别是角的对边,向量,且//
(Ⅰ)求角的大小;
(Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,.
(Ⅰ)求的值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

的内角的对边分别为,若,则=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有如下列命题:①三边是连续的三个自然数,且最大角是最小角的2倍的三角形存在且唯一;②若,则存在正实数,使得;③若函数在点处取得极值,则实数;④函数有且只有一个零点.其中正确命题的序号是          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的内角对边分别为=( )
A.B.C.D.

查看答案和解析>>

同步练习册答案