精英家教网 > 高中数学 > 题目详情
已知直线l的参数方程为
x=-1+
2
2
t
y=
2
2
t
(t为参数),曲线C的极坐标方程是ρ=
sinθ
1-sin2θ
以极点为原点,极轴为x轴正方向建立直角坐标系,点M(-1,0),直线l与曲线C交于A,B两点.
(1)写出直线l的极坐标方程与曲线C的普通方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|•|MB|的值.
分析:(1)将直线l的参数方程消去参数t得直线的普通方程,再化成直线l的极坐标方程,曲线C的极坐标方程化成:ρsinθ=ρ2cos2θ,最后再化成普通方程即可;
(2)将直线的参数方程代入y=x2得关于t的一元二次方程,再结合根与系数的关系即得|MA|•|MB|=|t1t2|=2.
解答:解(1)将直线l的参数方程消去参数t得:x=-1+y,
∴直线l的极坐标方程
2
ρcos(θ+
π
4
)=1
,(3分)
曲线C的极坐标方程化成:ρsinθ=ρ2cos2θ,
其普通方程是:y=x2(2分)
(2)将
x=-1+
2
2
t
y=
2
2
t
代入y=x2
t2-3
2
t+2=0
,3分
∵点M(-1,0)在直线上,
∴|MA|•|MB|=|t1t2|=2(2分).
点评:本题考查点的极坐标和直角坐标的互化、直线的参数方程,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

C选修4-4:坐标系与参数方程已知直线l的参数方程:
x=2t
y=1+4t
(t为参数),曲线C的极坐标方程:ρ=2
2
sin(θ+
π
4
),求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标与参数方程:
已知直线l的参数方程是:
x=2t
y=1+4t
(t为参数),圆C的极坐标方程是:ρ=2
2
sin(θ+
π
4
),试判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=
1
2
t
y=2+
3
2
t
(t为参数),曲线C的极坐标方程是ρ=
sinθ
1-sin2θ
以极点为原点,极轴为x轴正方向建立直角坐标系,点M(0,2),直线l与曲线C交于A,B两点.
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)线段MA,MB长度分别记|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题) 已知直线l的参数方程为
x=
2
2
t
y=1+
2
2
t
(t为参数),圆C的参数方程为
x=cosθ+2
y=sinθ
(θ为参数),则圆心C到直线l的距离为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•香洲区模拟)已知直线L的参数方程为:
x=t
y=a+
3
t
(t为参数),圆C的参数方程为:
x=sinθ
y=cosθ+1
(θ为参数).若直线L与圆C有公共点,则常数a的取值范围是
[-1,3]
[-1,3]

查看答案和解析>>

同步练习册答案