精英家教网 > 高中数学 > 题目详情

定义在上的函数满足以下条件:

(1)对任意(2)对任意.

以下不等式:①;②;③;④.其中一定成立的是           (请写出所有正确的序号)

 

【答案】

①②③

【解析】

试题分析:条件(1)说明是奇函数;条件(2)说明函数在是增函数且函数值为正数。由(1)可知在[-a,-1]函数也为增函数,函数值为负,且有a>1>0.

因为奇函数在x=0有意义,则f(0)=0,所以结合(2)知①对;

因为所以,②对;

因为a>1>0,,且a越大,越接近-3,能保证自变量的值在函数的增区间内,所以正确,③对;

对于④,特取a=2时。 , f(-a)=f(2)>0,所以 <f(2)矛盾,④不成立。

综上所述①②③一定成立。

考点:本题主要考查函数的奇偶性、单调性,均值定理的应用。

点评:中档题,对于奇函数,其图象关于原点成中心对称。在关于原点对称的区间,奇函数单调性相同,偶函数单调性相反。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=
4

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省长沙市同升湖实验学校高三(上)第一次月考数学试卷(理科)(解析版) 题型:填空题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京五中高三(上)第二次月考数学试卷(文科)(解析版) 题型:填空题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

科目:高中数学 来源:2011年高三数学(理科)一轮复习讲义:2.3 函数的奇偶性(解析版) 题型:解答题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

科目:高中数学 来源:2010年高考数学猜题精粹(文科)(解析版) 题型:解答题

定义在R上的偶函数f(x),满足以f(x+2)=-f(x)且在[0,2]上是减函数,若方程f(x)=m(m>0)在区间[-2,6]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=   

查看答案和解析>>

同步练习册答案