精英家教网 > 高中数学 > 题目详情

如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.

证明:连接OB、BI、OC,
由O是外心知∠IOC=2∠IBC.
由I是内心知∠ABC=2∠IBC.
从而∠IOC=∠ABC.
同理∠IOB=∠ACB.
而∠A+∠ABC+∠ACB=180°,
故∠BOC+∠A=180°,
于是O、B、A、C 四点共圆.
分析:如图,连接OB、BI、OC,由O是外心知∠IOC=2∠IBC,由I是内心知∠ABC=2∠IBC,然后利用三角形的内角和定理即可证明∠BOC+∠A=180°,接着即可证明△BIC的外心O与A、B、C四点共圆.
点评:此题主要考查了四点共圆的问题,解题的关键是利用三角形的外心和内心得到角的关系,然后利用三角形的内角和解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xOy中,已知椭圆C:
x23
+y2=1
.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年普通高等学校招生全国统一考试文科数学试题山东卷 题型:044

在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).

(Ⅰ)求m2+k2的最小值;

(Ⅱ)若|OG|2=|OD|·|OE|,

(i)求证:直线l过定点;

(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄石市有色一中高二(上)期中数学试卷(文科)(解析版) 题型:解答题

在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年广东省高考数学研讨会材料--2011年高考数学试题“红黑榜”(解析版) 题型:解答题

在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年山东省高考数学试卷(文科)(解析版) 题型:解答题

在平面直角坐标系xOy中,已知椭圆.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A,B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).
(Ⅰ)求m2+k2的最小值;
(Ⅱ)若|OG|2=|OD|?|OE|,
(i)求证:直线l过定点;
(ii)试问点B,G能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.

查看答案和解析>>

同步练习册答案