精英家教网 > 高中数学 > 题目详情
设函数f(x)=
m
n
,其中
m
=(cosx,
3
sin2x),
n
=(2cosx,1).
(1)求函数f(x)的单调增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=
3
,b+c=3,求△ABC的面积.
(1)∵
m
=(cosx,
3
sin2x),
n
=(2cosx,1),
∴f(x)=
m
n
=2cos2x+
3
sin2x,(2分)
=cos2x+
3
sin2x+1
=2sin(2x+
π
6
)+1,…(4分)
当2kπ-
π
2
<2x+
π
6
<2kπ+
π
2
(k∈Z),
即kπ-
π
3
<x<kπ+
π
6
(k∈Z)时,f(x)单调递增,…(5分)
则f(x)的单调增区间是(kπ-
π
3
,kπ+
π
6
)(k∈Z);…(6分)
(包含或不包含区间端点均可,但要前后一致).
(2)∵f(A)=2sin(2A+
π
6
)+1=2,0<A<π,…(7分)
∴2A+
π
6
=
6
,即A=
π
3
,…(9分),又a=
3

由余弦定理a2=b2+c2-2bccosA得:3=b2+c2-bc=(b+c)2-3bc,…(10分)
把b+c=3代入得:bc=2,…(12分)
所以△ABC的面积为S△ABC=
1
2
bcsinA=
1
2
×2×
3
2
=
3
2
.…(13分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,-
3
sin2x)
n
=(cosx,1),设函数f(x)=
m
n
,x∈R.
(Ⅰ)求函数f(x)的最小正周期和单调递减区间;
(Ⅱ)若方程f(x)-k=0在区间[0,
π
2
]
上有实数根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=m-
13x+1
(x∈R):
(1)判断并证明函数f(x)的单调性
(2)是否存在实数m使函数f(x)为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R.
(1)求f(x)的最小正周期和单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2,b=1△ABC的面积为
3
2
,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=m(1+sin2x)+cos2x,x∈R,且函数y=f(x)的图象经过点(
π4
,2).
(1)求实数m的值;
(2)求函数f(x)的最小值及此时x值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中
m
=(cosx,
3
sin2x),
n
=(2cosx,1).
(1)求函数f(x)的单调增区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=
3
,b+c=3,求△ABC的面积.

查看答案和解析>>

同步练习册答案