(本小题满分13分)
为保护水资源,宣传节约用水,某校4名志愿者准备去附近的甲、乙、丙三家公园进行宣传活动,每名志愿者都可以从三家公园中随机选择一家,且每人的选择相互独立.
(Ⅰ)求4人恰好选择了同一家公园的概率;
(Ⅱ)设选择甲公园的志愿者的人数为
,试求
的分布列及期望.
(1)
(2)
的分布列为:
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
的期望为![]()
【解析】(Ⅰ)设“4人恰好选择了同一家公园”为事件A. ………………1分
每名志愿者都有3种选择,4名志愿者的选择共有
种等可能的情况 .
…………………2分
事件A所包含的等可能事件的个数为3, …………………3分
所以,
.
即:4人恰好选择了同一家公园的概率为
. ………………5分
(Ⅱ)设“一名志愿者选择甲公园”为事件C,则
. .………………………6分
4人中选择甲公园的人数
可看作4次独立重复试验中事件C发生的次数,因此,随机变量
服从二项分布.
可取的值为0,1,2,3,4. .………………………8分
,
. .………………………10分
的分布列为:
|
|
0 |
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
.………………………12分
的期望为
.
.………………………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com