精英家教网 > 高中数学 > 题目详情
2.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于2.

分析 由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r.

解答 解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r,
则8-r+6-r=10,
∴r=2.
故答案为:2.

点评 本题考查三视图,考查几何体的内切圆,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.用列举法表示A={x|-4<x<2,x∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{e^x+a,x≤0}\\{3x-1,x>0}\end{array}\right.$(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是(  )
A.(-∞,-1)B.(-∞,0)C.(-1,0)D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆F1:(x+1)2+y2=1,圆F2:(x-1)2+y2=25,动圆P与圆F1外切并且与圆F2内切,动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)若曲线C与x轴的交点为A1,A2,点M是曲线C上异于点A1,A2的点,直线A1M与A2M的斜率分别为k1,k2,求k1k2的值.
(Ⅲ)过点(2,0)作直线l与曲线C交于A,B两点,在曲线C上是否存在点N,使$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{ON}$?若存在,请求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z1=3-i,z2=1+i,$\overline{{z}_{1}}$是z1的共轭复数,则$\frac{\overline{{z}_{1}}}{{z}_{2}}$=(  )
A.1+iB.1-iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$U=\{y|y={2^x},x≥-1\},A=\{x|\frac{1}{x-1}≥1\}$,则∁UA=(  )
A.$[\frac{1}{2},2]$B.[2,+∞)C.$[\frac{1}{2},1]∪(2,+∞)$D.$[\frac{1}{2},2)∪(2,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,M是正方体ABCD-A1B1C1D1对角线AC1上的动点,过点M作垂直于面ACC1A1的直线与正方体表面分别交于P、Q两点,设AM=x,PQ=y,则函数y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设α、β为两个不同平面,若直线l在平面α内,则“α⊥β”是“l⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)定义域为A,值域为B.若B?A,则称f(x)在A上为“内向函数”,若A?B,则称f(x)在A上为“外向函数”.
(1)若f(x)=tanx,试判断f(x)在定义域上是“内向函数”还是“外向函数”;
(2)若$f(x)=lnx-\frac{a}{x}({a≤0})$在[1,e]上是“内向函数”,求a的范围;
(3)若B⊆A,则称f(x)在A上为“伪内向函数”.试证:f(x)=ax-lnx在[1,+∞)上是“伪内向函数”的充要条件是a≥1.

查看答案和解析>>

同步练习册答案