精英家教网 > 高中数学 > 题目详情
已知:圆x2+y2=1过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
x2
a2
+
y2
b2
=1
相交于A,B两点记λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.
解;(Ⅰ)由题意知,椭圆的焦距2c=2∴c=1
又∵圆x2+y2=1与椭圆有且仅有两个公共点,∴b=1,∴a=
2

∴圆的方程为
x2
2
+y2=1

(Ⅱ)∵直线y=kx+m与圆x2+y2=1相切,∴原点O到直线的距离
|m|
1+k2
=1,即m2=k2+1
把直线y=kx+m代入椭圆
x2
2
+y2=1
,可得(1+2k2)x2+4kmx+2m2-2=0
设A(x1,y1),B(x1,y2),则
x1+x2=-
4km
2k2+1
x1x2=
2(m2-1)
2k2+1
 

λ=
OA
OB
=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2
=(1+k2
2(m2-1)
2k2+1
-
4k2m2
2k2+1
+m2
2
3
≤λ≤
3
4
,∴
2
3
k2 +1
2k2+1
3
4
,解得,
1
2
≤k2≤1
∴k的取值范围是[-1,-
2
2
]∪[
2
2
,1];
(Ⅲ)|AB|2=(x1-x22+(y1-y22=(1+k2)(x1-x22
=(1+k2)[(-
4km
2k2+1
)
2
-4
2(m2-1)
2k2+1
]=(1+k2)[
16k2(k2+1)
(2k2+1)2
-
8k2
2k2+1
]
=(1+k2
8k2
(2k2+1)2
=2-
2
(2k2+1)2

S△OAB2=
1
4
|AB|2×1=
1
4
2-
2
(2k2+1)2

1
2
≤k2≤1,∴
2
9
2
(2k2+1)2
1
2

3
2
≤2-
2
(2k2+1)2
16
9
,∴
3
8
1
4
(2-
2
(2k2+1)2
)≤
4
9

3
8
≤S△OAB2=≤
4
9

6
4
≤S△OAB
2
3

∴△OAB的面积S的取值范围为[
6
4
2
3
]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两圆x2+y2-10x-10y=0,x2+y2+6x-2y-40=0,
求(1)它们的公共弦所在直线的方程;(2)公共弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆x2+y2=9和(x-2)2+(y-1)2=16相交于A,B两点,则直线AB的方程是
2x+y+1=0
2x+y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆x2+y2-10x-10y=0和x2+y2+6x+2y-40=0,则两圆的位置关系是
相交
相交

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳三模)已知离心率为
2
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点M(
6
,1)

(1)求椭圆C的方程;
(2)已知与圆x2+y2=
8
3
相切的直线l与椭圆C相交于不同两点A、B,O为坐标原点,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两圆x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是
 

查看答案和解析>>

同步练习册答案