精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)判断函数f(x)在(-1,1)上的单调性,并用单调性的定义加以证明;
(2)若a=1,求函数f(x)在数学公式上的值域.

解:(1)当a>0时,设-1<x1<x2<1
==
∵x1-1<0,x2-1<0,a(x1-x2)<0
>0,得f(x1)>f(x2),函数f(x)在(-1,1)上是减函数;
同理可得,当a<0时,函数f(x)在(-1,1)上是增函数.
(2)当a=1时,由(1)得f(x)=在(-1,1)上是减函数
∴函数f(x在上也是减函数,其最小值为f()=-1,最大值为f(-)=
由此可得,函数f(x)在上的值域为[-1,].
分析:(1)根据单调性的定义,进行作差变形整理,可得当a>0时,函数f(x)在(-1,1)上是减函数,当a<0时,函数f(x)在(-1,1)上是增函数;
(2)根据(1)的单调性,算出函数在在上的最大值和最小值,由此即可得到f(x)在上的值域.
点评:本题给出分式函数,讨论了函数的单调性并求函数在闭区间上的值域,着重考查了函数单调性的判断与证明和函数的值域等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)判断函数在区间上的单调性;

(2)求函数在区间是区间[2,6]上的最大值和最小值.

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省江门市台山侨中高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)判断f(x)的奇偶性;(2)若,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:2015届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题

已知函数

(1)判断函数的奇偶性;(4分)

(2)若关于的方程有两解,求实数的取值范围;(6分)

(3)若,记,试求函数在区间上的最大值.(10分)

 

查看答案和解析>>

科目:高中数学 来源:2011年辽宁省营口市高一上学期期末检测数学试卷 题型:解答题

(本小题满分12分)

 已知函数

(1)判断其奇偶性;

(2)指出该函数在区间(0,1)上的单调性并证明;

(3)利用(1)、(2)的结论,指出该函数在(-1,0)上的增减性.

 

查看答案和解析>>

科目:高中数学 来源:2010年福建省四地六校高二下学期第二次联考数学(文科)试题 题型:解答题

(本小题满分12分)已知函数

(1)判断函数的奇偶性;(2)求证:方程至少有一根在区间

 

查看答案和解析>>

同步练习册答案