精英家教网 > 高中数学 > 题目详情

,则a=3

A.充分不必要条件                        B.必要不充分条件

C.充分必要条件                          D.既不充分也不必要条件

 

【答案】

C

【解析】

试题分析:根据题意,由于函数那么当x=0时,函数值为0,则f(0)=lg(a-2)=0,则可知a-2=1,a=3,故可知结论能推出条件,但是当a=3,函数解析式是奇函数,故可知选C.

奇函数,则可知条件不能推出结论,因此可知选C.

考点:本试题考查了函数的奇偶性的运用。

点评:解决该试题的关键是根据已知函数求解定义域,以及函数解析式f(-x)与f(x)的关系式式,进而判定的函数的性质,同时对于奇函数在定义域可以取零时,则可知函数值为零,这一点要记住,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,是否存在实数m,使得直线6x+y+m=0恰为曲线y=f(x)的切线?若存在,求出m的值;若不存在,说明理由;
(3)设定义在D上的函数y=h(x)的图象在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4,试问y=f(x)是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下面四个判断:
①命题“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个假命题;
②若“p或q”为真命题,则p、q均为真命题;
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是“?a、b∈R,a2+b2≤2(a-b-1)”;
④若函数f(x)=ln(a+
2x+1
)
的图象关于原点对称,则a=-1.
其中正确的有
(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

有下面四个判断,其中正确的个数是(  )
①命题:“设a、b∈R,若a+b≠6,则a≠3或b≠3”是一个真命题
②若“p或q”为真命题,则p、q均为真命题
③命题“?a、b∈R,a2+b2≥2(a-b-1)”的否定是:“?a、b∈R,a2+b2≤2(a-b-1)”

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)和g(x),设α∈{x∈R|f(x)=0},β∈{x∈R|g(x)=0},若存在α、β,使得|α-β|≤1,则称f(x)与g(x)互为“零点关联函数”.若函数f(x)=ex-1+x-2与g(x)=x2-ax-a+3互为“零点关联函数”,则实数a的取值范围为(  )

查看答案和解析>>

同步练习册答案