精英家教网 > 高中数学 > 题目详情
以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积(m2 115 110 80 135 105
销售价格(万元) 24.8 21.6 18.4 29.2 22
(1)画出数据对应的散点图;    
(2)求线性回归方程,并在散点图中加上回归直线;
(3)据(2)的结果估计当房屋面积为150m2时的销售价格.
(参考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
?
a
=
.
y
-
?
b
.
x
5
i=1
x2i=60975
5
i=1
xiyi=115×24.8+110×21.6+80×18.4+135×29.2+105×22=12952
分析:(1)根据表中所给的五对数据,在平面直角坐标系中描出这五个点,得到这组数据的散点图.
(2)根据表中所给的数据,求出横标和纵标的平均数,把求得的数据代入求线性回归方程的系数的公式,利用最小二乘法得到结果,写出线性回归方程.
(3)根据第二问求得的线性回归方程,代入所给的x的值,预报出销售价格的估计值,这个数字不是一个准确数值.
解答:解:(1)数据对应的散点图如图所示:
精英家教网
(2)
.
x
=
1
5
5
i=1
xi=109
.
y
=
1
5
5
i=1
yi=23.2
5
i=1
x2i=60975
5
i=1
xiyi=115×24.8+110×21.6+80×18.4+135×29.2+105×22=12952

设所求回归直线方程为
?
y
=
?
b
x+
?
a

?
b
=
12952-5×109×23.2
60975-5×109×109
≈0.1962

?
a
=
.
y
-
?
b
.
x
=23.2-0.1962×109≈1.8142

故所求回归直线方程为
?
y
=0.1962x+1.8142
(3)据(2),当x=150m2时,销售价格的估计值为:
?
y
=0.1962×150+1.8142=31.2442(万元)
点评:本题考查线性回归方程的求法和应用,解决本题的关键是利用最小二乘法求线性回归方程的系数时,不要弄错数据.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
精英家教网
(1)求线性回归方程;
(2)据(1)的结果估计当房屋面积为150m2时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:
房屋面积m2 110 90 80 100 120
销售价格(万元) 33 31 28 34 39
(1)画出数据对应的散点图;
(2)求线性回归方程;
(3)据(2)的结果估计当房屋面积为150m2时的销售价格.
(提示:
?
b
=
n
i=1
xiyi-n
.
x
 
.
y
n
i=1
xi2-n
.
x
2
?
a
=
.
y
-
?
b
.
x
,1102+902+802+1002+1202=51000,110×33+90×31+80×28+100×34+120×39=16740)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y(万元)和房屋的面积x(m2)的数据,若由资料可知y对x呈线性相关关系.试求:
x 80 90 100 110 120
y 48 52 63 72 80
(1)线性回归方程;
(2)根据(1)的结果估计当房屋面积为150m2时的销售价格.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:

房屋面积(m2)

115

110

80

135

105

销售价格(万元)

24.8

21.6

18.4

29.2

22

(1)画出数据对应的散点图;

(2)求线性回归方程,并在散点图中加上回归直线;

(3)据(2)的结果估计当房屋面积为150 m2时的销售价格.

查看答案和解析>>

同步练习册答案