精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系中,定义$\left\{\begin{array}{l}{{x}_{n+1}={y}_{n}-{x}_{n}}\\{{y}_{n+1}={y}_{n}+{x}_{n}}\end{array}\right.$(n∈N*为点Pn(xn,yn)到点Pn+1(xn+1,yn+1)的一个变换,我们把它称为点变换.已知P1(0,1),P2(x2,y2),…,Pn(xn,yn),Pn+1(xn+1,yn+1)是经过点变换得到的一列点.设an=|PnPn+1|,数列{an}的前n项和为Sn,那么$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{a}_{n}}$的值为=2+$\sqrt{2}$.

分析 由题设知a1=|(0,1)•(1,1)|=1,a2=|(1,1)•(0,2)|=$\sqrt{2}$,a3=|(0,2)•(2,2)|=2,a4=|(2,2)•(0,4)|=2$\sqrt{2}$,…,an=($\sqrt{2}$)n-1,Sn=a1+a2+a3+…+an=$\frac{(\sqrt{2})^{n}-1}{\sqrt{2}-1}$.由此可求出$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{a}_{n}}$的值.

解答 解:由题设知P1(0,1),P2(1,1),a1=|P1P2|=1,
且当n≥2时,an2=|PnPn+1|2=(xn+1-xn2-(yn+1-yn2
=[(yn-xn)-xn]2+[(yn+xn)-yn]2=5xn2-4xnyn+yn2
 an-12=|Pn-1Pn|2=(xn-xn-12-(yn-yn-12
由定义$\left\{\begin{array}{l}{{x}_{n+1}={y}_{n}-{x}_{n}}\\{{y}_{n+1}={y}_{n}+{x}_{n}}\end{array}\right.$(n∈N),得$\left\{\begin{array}{l}{{x}_{n}={y}_{n-1}-{x}_{n-1}}\\{{y}_{n}={y}_{n-1}+{x}_{n-1}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{x}_{n-1}=\frac{{y}_{n}-{x}_{n}}{2}}\\{{y}_{n-1}=\frac{{y}_{n}+{x}_{n}}{2}}\end{array}\right.$,
代入①计算化简得an-12=|Pn-1Pn|2=($\frac{3x-y}{2}$)2+($\frac{y-x}{2}$)2=$\frac{1}{2}$(5xn2-4xnyn+yn2)=$\frac{1}{2}$an2
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\sqrt{2}$(n≥2),
∴数列{an}是以$\sqrt{2}$为公比的等比数列,且首项a1=1,
∴an=($\sqrt{2}$)n-1
∴Sn=a1+a2+a3+…+an=$\frac{(\sqrt{2})^{n}-1}{\sqrt{2}-1}$.
∴$\frac{{S}_{n}}{{a}_{n}}$=$\frac{(\sqrt{2})^{n}-1}{\sqrt{2}-1}$•$\frac{1}{(\sqrt{2})^{n-1}}$=$\frac{\sqrt{2}-\frac{1}{(\sqrt{2})^{n-1}}}{\sqrt{2}-1}$,
则$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{a}_{n}}$=$\underset{lim}{n→∞}$$\frac{\sqrt{2}-\frac{1}{(\sqrt{2})^{n-1}}}{\sqrt{2}-1}$=$\frac{\sqrt{2}-0}{\sqrt{2}-1}$=2+$\sqrt{2}$.
故答案为:$2+\sqrt{2}$.

点评 本题考查集合的性质和运算,解题时要注意等比数列前n项和公式的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在△ABC中,角A,B,C所对的边分别是a,b,c,若$20a•\overrightarrow{BC}+15b•\overrightarrow{CA}+12c•\overrightarrow{AB}=\vec 0$,则△ABC的最小角等于$arccos\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ax3-3x2+1,若f(x)=0存在唯一正实数根x0,则a取值范围是(-∞,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=ln(2-x-x2)的单调递减区间为(  )
A.(-∞,-$\frac{1}{2}$]B.(-2,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,+∞)D.(-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=loga(x+1)+2(a>0且a≠1)恒过定点A,则A的坐标为(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=log2(-2x+4)的定义域是(  )
A.{x|x>-2}B.{x|x≥-2}C.{x|x<2}D.{x|x≤-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线y=x4在x=1处的切线方程为(  )
A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,AB=3,AC=4,则$\overrightarrow{BC}$在$\overrightarrow{CA}$方向上的投影是(  )
A.4B.3C.-4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}和{bn}都是等差数列,若a2+b2=3,a4+b4=5,则a7+b7=(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案