精英家教网 > 高中数学 > 题目详情

已知圆C1: (x+1)2+y2=1和圆C2: (x-1)2+y2=25,则与C1外切而又与C2内切的动圆圆心P的轨迹方程是_________________

 

【答案】

【解析】设动圆的半径为r,则由题意知

,所以点P的轨迹方程是以C1、C2为焦点的椭圆。

因为a=3,c=1,所以b2=8,所以椭圆方程为.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1(x+2)2+(y-1)2=1,圆C2(x-3)2+(y-4)2=9,M,N分别是圆C1
C
 
2
上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源:高考总复习全解 数学 一轮复习·必修课程 (人教实验版) B版 人教实验版 B版 题型:044

已知圆C1∶(x+1)2+(y-3)2=9,圆C2∶x2+y2-4x+2y-11=0,求两圆公共弦所在直线的方程及公共弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是(    )

A.(x-3)2+(y-5)2=25

B.(x-5)2+(y+1)2=25

C.(x-1)2+(y-4)2=25

D.(x-3)2+(y+2)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.

查看答案和解析>>

同步练习册答案