精英家教网 > 高中数学 > 题目详情
9.如图,四棱锥P-ABCD中,AD∥BC,$AB=BC=\frac{1}{2}AD$,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.

分析 (1)连接EC,推导出四边形ABCE是平行四边形,从而FO∥AP,由此能证明AP∥平面BEF.
(2)连接FH,OH,推导出FH∥PD,从而FH∥平面PAD.再求出OH∥AD,从而OH∥平面PAD,进而平面OHF∥平面PAD,由此能证明GH∥平面PAD.

解答 证明:(1)连接EC,∵AD∥BC,$BC=\frac{1}{2}AD$,
∴BC=AE,BC∥AE,∴四边形ABCE是平行四边形,
∴O为AC的中点.
又∵F是PC的中点,∴FO∥AP,
又∵FO?平面BEF,AR?平面BEF,
∴AP∥平面BEF.
(2)连接FH,OH,
∵F,H分别是PC,CD的中点,∴FH∥PD,
又∵PD?平面PAD,FH?平面PAD,
∴FH∥平面PAD.
又∵O是BE的中点,H是CD的中点,
∴OH∥AD,AD?平面PAD,OH?平面PAD,
∴OH∥平面PAD.
又∵FH∩OH=H,∴平面OHF∥平面PAD,
又∵GH?平面OHF,
∴GH∥平面PAD.

点评 本题考查线面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.菱形ABCD中,E,F分别是AD,CD中点,若∠BAD=60°,AB=2,则$\overrightarrow{AF}$•$\overrightarrow{BE}$=(  )
A.$\frac{5}{2}$B.-$\frac{5}{2}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线y2=16x的焦点到双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1的渐近线的距离是(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列关系中,正确的个数为(  )
①$\frac{{\sqrt{2}}}{2}∈R$
②0∈N*
③{-5}⊆Z
④∅={∅}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.学校为了提高学生的数学素养,开设了《数学史选讲》、《对称与群》、《球面上的几何》三门选修课程,供高二学生选修,已知高二年级共有学生600人,他们每个人都参加且只参加一门课程的选修,为了了解学生对选修课的学习情况,现用分层抽样的方法从中抽取30名学生进行座谈.据统计,参加《数学史选讲》、《对称与群》、《球面上的几何》的人数依次组成一个公差为-40的等差数列,则应抽取参加《数学史选讲》的学生的人数为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,执行该程序,若输入4,则输出S=(  )
A.10B.17C.19D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x|(x-1)(x-4)=0},N={x|(x+1)(x-3)<0},则M∩N=(  )
A.B.{1}C.{4}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC的面积为360,点P是三角形所在平面内一点,且$\overrightarrow{AP}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$,则△PAB的面积为90.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是某空间几何体的三视图其中主视图、侧视图、俯视图依次为直角三角形、直角梯形、等边三角形,则该几何体的体积(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案