精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)是定义在R上的奇函数.且当x<0时,f(x)=3x,则f(log94)的值为(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

分析 根据函数奇偶性的性质,进行转化即可得到结论.

解答 解:∵log94=log32>0,
∴-log32<0,
∵f(x)是定义在R上的奇函数,且当x<0时,f(x)=3x
∴f(-log32)=-f(log32),
即f(log32)=-f(-log32)=-${3}^{lo{g}_{3}2}$=-$\frac{1}{2}$,
故选:B.

点评 本题主要考查函数值的计算,利用函数奇偶性的性质以及指数函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在△ABC中,$\overrightarrow{BA}$•$\overrightarrow{BC}$=0,且AB=BC=1,点M满足$\overrightarrow{BM}$=2$\overrightarrow{AM}$,则$\overrightarrow{CM}$•$\overrightarrow{AC}$的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$lo{g}_{\frac{1}{2}}(|x|-1)$,则f(x)<0的解集是(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-1)∪(1,+∞)C.(-2,2)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知幂函数f(x)的图象过点(25,5).
(1)求f(x)的解析式;
(2)若函数g(x)=f(2-lgx),求g(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)的定义域是(0,1],那么函数f(2x)的定义域是(  )
A.(0,1)B.($\frac{1}{2}$,1)C.(-∞,0]D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.化简$\sqrt{6\frac{1}{4}}$×($\frac{1}{2}$)-2所得的结果是(  )
A.5B.10C.20D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某网站向500名网民调查对A、B两种事件的态度,赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多30人,其余的不赞成;另外对A、B都不赞成的网民数比对A、B都赞成的网民数的三分之一多10人.问对A、B都赞成的网民和都不赞成的网民各有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=-x2+kx在[2,4]上是单调函数,则实数k的取值范围是(-∞,4]∪[8,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=x2011+ax2013-$\frac{b}{x}$-8,f(-2)=10,求f(2).

查看答案和解析>>

同步练习册答案