已知函数
.
(1)若函数f(x)的图象在
处的切线斜率为3,求实数m的值;
(2)求函数f(x)的单调区间;
(3)若函数
在[1,2]上是减函数,求实数m的取值范围.
解:(1)
.
(2)函数
的单调递减区间是
;单调递增区间是
.
(3)
.
【解析】本题主要考查了函数的导数的求解,利用导数判断函数的单调区间,体现了分类讨论思想的应用,及函数的恒成立与函数的最值求解的相互转化思想的应用.
(Ⅰ)先对函数求导,然后由由已知f'(2)=1,可求a
(II)先求函数f(x)的定义域为(0,+∞),要判断函数的单调区间,需要判断导数f′(x)的正负,分类讨论:分(1)当a≥0时,(2)当a<0时两种情况分别求解
(II)由g(x)可求得g′(x),由已知函数g(x)为[1,2]上的单调减函数,可知g'(x)≤0在[1,2]上恒成立,即a≤
-x2在[1,2]上恒成立,要求a的范围,只要求解h(x)=
-x2,在[1,2]上的最小值即可
科目:高中数学 来源:2012-2013学年湖南省岳阳市高三第一次质量检测理科数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)若
为
的极值点,求实数
的值;
(2)若
在
上为增函数,求实数
的取值范围;
(3)当
时,方程
有实根,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源:吉林省10-11学年高二下学期期末考试数学(理) 题型:解答题
已知函数
.![]()
(1)若从集合
中任取一个元素
,从集合
中任取一个元素
,求方程
有两个不相等实根的概率;
(2)若
是从区间
中任取的一个数,
是从区间
中任取的一个数,求方程
没有实根的概率.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com