精英家教网 > 高中数学 > 题目详情
用数学归纳法证明下面的等式
12-22+32-42+…+(-1)n-1·n2=(-1)n-1·
解:(1)当n=1时,左边=12=1
右边=(-1)0·
∴原等式成立。
(2)假设n=k(k∈N*,k≥1)时,等式成立,
即有12-22+32-42+…+(-1)k-1·k2=(-1)k-1·
那么,当n=k+1时,则有
12-22+32-42+…+(-1)k-1·k2+(-1)k(k+1)2
=(-1)k-1·+(-1)k·(k+1)2


∴n=k+1时,等式也成立,
由(1)(2)得对任意n∈N*有
12-22+32-42+…+(-1)n-1·n2=(-1)n-1·
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

试判断下面的证明过程是否正确:

用数学归纳法证明:

证明:(1)当时,左边=1,右边=1

∴当时命题成立.

(2)假设当时命题成立,即

则当时,需证

由于左端等式是一个以1为首项,公差为3,项数为的等差数列的前项和,其和为

式成立,即时,命题成立.根据(1)(2)可知,对一切,命题成立.

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知,(其中

⑴求

⑵试比较的大小,并说明理由.

【解析】第一问中取,则;                         …………1分

对等式两边求导,得

,则得到结论

第二问中,要比较的大小,即比较:的大小,归纳猜想可得结论当时,

时,

时,

猜想:当时,运用数学归纳法证明即可。

解:⑴取,则;                         …………1分

对等式两边求导,得

,则。       …………4分

⑵要比较的大小,即比较:的大小,

时,

时,

时,;                              …………6分

猜想:当时,,下面用数学归纳法证明:

由上述过程可知,时结论成立,

假设当时结论成立,即

时,

时结论也成立,

∴当时,成立。                          …………11分

综上得,当时,

时,

时, 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

试判断下面的证明过程是否是用数学归纳法的证明?若不是,请写出正确答案.

用数学归纳法证明:

1+4+7+…+(3n-2)=n(3n-1).

查看答案和解析>>

同步练习册答案