精英家教网 > 高中数学 > 题目详情
设函数
(1)若时,直线l与函数f(x)和函数g(x)的图象相切于同一点,求切线l的方程;
(2)若f(x)在[2,4]内为单调函数,求实数a的取值范围.
说明:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做第一题记分.
【答案】分析:(1)由f(x)求出其导函数,把切点的横坐标代入导函数中即可表示出切线的斜率,两次求出的斜率相等列出关于切点的横坐标x的方程,求出切点的坐标,根据得出的切点坐标,同时由f(x)求出其导函数,把切点的横坐标代入导函数中即可表示出切线的斜率,根据切点坐标和切线过原点写出切线方程即可.
(2)通过解f′(x),求其单调区间,转化为恒成立问题求a的取值范围.
解答:解:(1)若时,
=,g'(x)=2x
因为直线l与函数f(x)、g(x)的图象相切于同一点,
从而有:=2x(4分)
解得,(x=-1不在定义域内,故舍去)
又f'(1)=2,f(1)=1,

g'(1)=2,g(1)=1;

①当x=1时,则l的方程为:y=2x-1
②当时,又因为点也在f(x)的图象上,
所以l的方程为
综上所述直线l的方程为y=2x-1或
(2)∵=
要使f(x)在[2,4]为单调增函数,则f′(x)≥0在[2,4]恒成立,
≥0在[2,4]恒成立,即ax2+2x-a≥0在[2,4]恒成立,
又a(x2-1)≥-2x即(2≤x≤4)(8分)
(2≤x≤4),
因为<0(x>0),
所以u(x)在(0,+∞)上单调递减.
∴当2≤x≤4时,∈[-,-]
所以要使(2≤x≤4),
只须当时即可,(10分)
同理要为f(x)单调减函数,则f′(x)≤0在[2,4]恒成立,
易得
综上,f(x)在[2,4]为单调函数,
则a的取值范围为(12分).
点评:对于已知函数单调性,求参数范围问题的常见解法;设函数f(x)在(a,b)上可导,若f(x)在(a,b)上是增函数,则可得f′(x)≥0,从而建立了关于待求参数的不等式,同理,若f(x)在(a,b)上是减函数,,则可得f′(x)≤0.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分13分) 设函数

(1)若时函数有三个互不相同的零点,求的取值范围;

(2)若函数内没有极值点,求的取值范围;

(3)若对任意的,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数

(1)若时函数有三个互不相同的零点,求的取值范围;

(2)若函数内没有极值点,求的取值范围;

(3)若对任意的,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三第二次联考数学文卷 题型:解答题

设函数

(1)若时,函数取得极值,求函数的图像在处的切线方程;

(2)若函数在区间内不单调,求实数的取值范围。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式
(1)若数学公式时,直线l与函数f(x)和函数g(x)的图象相切于同一点,求切线l的方程;
(2)若f(x)在[2,4]内为单调函数,求实数a的取值范围.
说明:请考生在第22、23、24三题中任选一题作答,如果多做,则按所做第一题记分.

查看答案和解析>>

同步练习册答案