精英家教网 > 高中数学 > 题目详情

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(km/h)是车流密度x(辆/千米)的函数.当桥上的车流密度达到200辆/km时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/km时,车流速度为60km/h,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出其最大值.(精确到1辆/小时) 

(1)v(x)=(2)车流密度为100辆/km时,车流量可以达到最大,最大值约为3333辆/h.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。

(1)写出的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lg(1-x)+lg(1+x)+x4-2x2.
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.
(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;
(2)若该单位决定采用函数模型y=x-2lnx+a(a为常数)作为报销方案,请你确定整数a的值.(参考数据:ln2≈0.69,ln10≈2.3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

画出函数y=的图象,并利用图象回答:k为何值时,方程=k无解?有一个解?有两个解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=的图象与函数y=kx-2的图象恰有两个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米.已知后面墙的造价为每米45元,其他墙的造价为每米180元,设后面墙长度为米,修建此矩形场地围墙的总费用为元.
(1)求的表达式;
(2)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求实数a的取值范围.
(2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a是实数,讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.

查看答案和解析>>

同步练习册答案