| A. | z有最大值1,无最小值 | B. | z有最大值2,无最小值 | ||
| C. | z有最小值1,无最大值 | D. | z有最小值2,无最大值 |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答
解:由z=x-3y得y=$\frac{2}{3}$x-$\frac{z}{3}$,
作出不等式组对应的平面区域如图(阴影部分):
平移直线y=$\frac{2}{3}$x-$\frac{z}{3}$,
由图象可知当直线y=$\frac{2}{3}$x-$\frac{z}{3}$经过点A时,直线y=$\frac{2}{3}$x-$\frac{z}{3}$的截距最大,
此时z最小,
由 $\left\{\begin{array}{l}{x+2y+2=0}\\{2x-y+1=0}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=-\frac{4}{5}}\\{y=-\frac{3}{5}}\end{array}\right.$,即A(-$\frac{4}{5}$,-$\frac{3}{5}$)
∵x是整数,∴A点坐标不满足条件,
则当x=-1时,y=-1,此时代入目标函数z=2x-3y,
得z=-2×1-3×(-1)=3-2=1.
∴目标函数z=2x-3y的最小值是1.
故选:C.
点评 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{3}$个单位长度 | B. | 向右平移$\frac{π}{6}$个单位长度 | ||
| C. | 向左平移$\frac{π}{3}$个单位长度 | D. | 向左平移$\frac{π}{6}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| t(时) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{3}$ | B. | 0 | C. | $\sqrt{3}$ | D. | 1008$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com