精英家教网 > 高中数学 > 题目详情

若n∈N*数学公式(an、bn∈z),a5+b5=


  1. A.
    32
  2. B.
    50
  3. C.
    70
  4. D.
    120
C
分析:由可得,而的展开式的通项,则a5=C51+2C53+4C55,b5=C50+2C52+4C54,从而可求
解答:由可得
的展开式的通项
∴a5=C51+2C53+4C55=29,b5=C50+2C52+4C54=41
∴a5+b5=70
故选:C
点评:本题主要考查了二项展开式的通项的应用,属于公式的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N).对自然数k,规定{△kan}为{an}的k阶差分数列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知数列{an}的通项公式an=n2+n(n∈N),,试判断{△an},{△2an}是否为等差或等比数列,为什么?
(2)若数列{an}首项a1=1,且满足△2an-△an+1+an=-2n(n∈N),求数列{an}的通项公式.
(3)(理)对(2)中数列{an},是否存在等差数列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an对一切自然n∈N都成立?若存在,求数列{bn}的通项公式;若不存在,则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有
9
9
个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=
3(3n-1)
2
3(3n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有________个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有______个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=______.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京大学附中高三(上)入学摸底数学试卷(理科)(解析版) 题型:填空题

有一系列函数,如果它们解析式相同,值域相同,但定义域不同,则称这一系列函数为“同族函数”.那么函数的解析式为y=x2,值域为{1,2}的同族函数有    个;若n∈N*,集合An={1,2,…,n}是解析式为y=x2的函数的值域,设an表示该函数的同族函数的个数,则a1+a2+…+an=   

查看答案和解析>>

同步练习册答案