精英家教网 > 高中数学 > 题目详情
已知圆G:x2+y2-2x-,经过椭圆(a>b>0)的右焦点F及上顶点B,过椭圆外一点M(m,0)(m>0)的倾斜角为的直线l交椭圆于C.D两点.
(Ⅰ)求椭圆方程
(Ⅱ)当右焦点在以线段CD为直径的圆E的内部,求实数m的范围
(Ⅰ)∵圆G经过点F、B  ∴F(2,0),B(0,
∴椭圆的焦半径c=2,短半轴长b=  
∴a2=b2+c2=6
故椭圆方程为
(Ⅱ)设直线l的方程为y=-(m>
2x2-2mx+(m2-6)=0
由△=4m2-8(m2-6)>0m2<12  
∴-2<m<2
又m>      ∴<m<2
设C(x1,y1),D(x2,y2),则x1+x2=m,x1x2
∴y1·y2=[-][-]=
=(x1-2)(x2-2)+y1y2
x1x2+4=
∵点F在圆E内部    
<0即<0 0<m<3
又∵<m<2
∴实数m的取值范围为(,3)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知圆G:x2+y2-2x-
2
y=0,经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为
6
的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点F及上顶点B,过椭圆外一点(m,0)(ma)且倾斜角为
5
6
π
的直线l交椭圆于C,D两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若
FC
FD
<0
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知圆G:x2+y2-2x-
2
y=0经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.过点M(m,0)作倾斜角为
5
6
π
的直线l交椭圆于C、D两点.
(1)求椭圆的方程;
(2)若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)已知圆G:x2+y2-2x-
2
y=0
经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
5
6
π
的直线l交椭圆于C、D两点,若右焦点F在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆G:x2+y2-2
2
x-2y=0经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B.
(1)求椭圆的方程;
(2)过椭圆外一点M(m,0)(m>a)倾斜角为
2
3
π
的直线l交椭圆于C、D两点,若点N(3,0)在以线段CD为直径的圆E的外部,求m的取值范围.

查看答案和解析>>

同步练习册答案