精英家教网 > 高中数学 > 题目详情
(2012•深圳二模)如果函数y=|x|-1的图象与方程x2+λy2=1的曲线恰好有两个不同的公共点,则实数λ的取值范围是(  )
分析:利用绝对值的几何意义,由y=|x|-1可得,x≥0时,y=x-1;x<0时,y=-x-1,确定函数y=|x|-1的图象与方程x2+λy2=1的曲线必相交于(±1,0),为了使函数y=|x|-1的图象与方程x2+λy2=1的曲线恰好有两个不同的公共点,则两曲线无其它交点.y=x-1代入方程x2+λy2=1,整理可得(1+λ)x2-2λx+λ-1=0,分类讨论,可得结论,根据对称性,同理可得x<0时的情形.
解答:解:由y=|x|-1可得,x≥0时,y=x-1;x<0时,y=-x-1,
∴函数y=|x|-1的图象与方程x2+λy2=1的曲线必相交于(±1,0)
所以为了使函数y=|x|-1的图象与方程x2+λy2=1的曲线恰好有两个不同的公共点,则
y=x-1代入方程x2+λy2=1,整理可得(1+λ)x2-2λx+λ-1=0
当λ=-1时,x=1满足题意,
由于△>0,1是方程的根,∴
λ-1
1+λ
0,即-1<λ<1时,方程两根异号,满足题意;
y=-x-1代入方程x2+λy2=1,整理可得(1+λ)x2+2λx+λ-1=0
当λ=-1时,x=-1满足题意,
由于△>0,-1是方程的根,∴
λ-1
1+λ
0,即-1<λ<1时,方程两根异号,满足题意;
综上知,实数λ的取值范围是[-1,1)
故选B.
点评:本题考查曲线的交点,考查学生分析解决问题的能力,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳二模)已知平面向量
a
b
满足条件
a
+
b
=(0,1),
a
-
b
=(-1,2),则
a
b
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)设a,b,c,d∈R,若a,1,b成等比数列,且c,1,d 成等差数列,则下列不等式恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=
f(x)x
-4lnx
的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)曲线y=(
1
2
)
x
在x=0点处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)执行图中程序框图表示的算法,若输入m=5533,n=2012,则输出d=
503
503
(注:框图中的赋值符号“=”也可以写成“←”或“:=”)

查看答案和解析>>

同步练习册答案