精英家教网 > 高中数学 > 题目详情

如图,椭圆C:数学公式(a>b>0),经过点(0,1),椭圆上点到焦点的最远距离为数学公式
(Ⅰ)求椭圆C的方程.
(Ⅱ)过(1,0)点的直线L与椭圆C交于A,B两点,点A关于x轴的对称点A′(A′与B不重合),求证直线A′B与x轴交于一个定点,求此点坐标.

(Ⅰ)解:∵椭圆C:(a>b>0),经过点(0,1),椭圆上点到焦点的最远距离为

∵b2=a2-c2

∴a=2
∴椭圆C的方程为
(Ⅱ)证明:设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),则A′(x1,-y1),
直线AB的方程代入椭圆方程可得(1+4k2)x2-8k2x+k2-4=0
∴x1+x2=
又直线A′B的方程为y-y2=(x-x2
令y=0可得x====4
∴直线A′B与x轴交于一个定点,坐标为(4,0).
分析:(Ⅰ)根据椭圆C:(a>b>0),经过点(0,1),椭圆上点到焦点的最远距离为,建立方程组,结合b2=a2-c2,即可求椭圆C的方程;
(Ⅱ)设出点的坐标,直线AB的方程,代入椭圆方程,可得直线A′B的方程,利用韦达定理,即可证得结论.
点评:本题考查椭圆的标准方程,考查椭圆的几何性质,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,椭圆C:数学公式(a>b>0)的一个焦点是F(-数学公式,0),离心率e=数学公式,过点A(0,-2)且不与y轴重合的直线l与椭圆C相交于不同的两点P、Q
(1)求椭圆C的方程;
(2)若点F到直线l的距离为2,求直线l的方程;
(3)问在y轴上是否存在一个定点B,使得直线PB与椭圆C的另一个交点R是点Q关于y轴的对称点?若存在,求出定点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省珠海一中高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图,椭圆C,a,b为常数),动圆,b<t1<a.点A1,A2分别为C的左,右顶点,C1与C相交于A,B,C,D四点.
(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;
(Ⅱ)设动圆与C相交A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省厦门一中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,椭圆C:(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市昌平区高二(上)期末数学试卷(理科)(解析版) 题型:填空题

如图,椭圆C:(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
   (ⅰ)求证:点M恒在椭圆C上;
   (ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2008年福建省高考数学试卷(文科)(解析版) 题型:解答题

如图,椭圆C:(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

同步练习册答案