(1)若直线l交y轴于点M,且=λ1,=λ2,当m变化时,求λ1+λ2的值;
(2)连结AE、BD,试探索当m变化时,直线AE、BD是否相交于一点是N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.
解:(1)由已知得M(0,),设A(x1,y1),B(x2,y2),由得(3m2+4)y2+6my-6=0.
∴y1+y2=,y1y2=.
由=λ1,得(x1,y1+)=λ1(1-x1,-y1),
∴y1+=-λ1y1.∴λ1=-1.同理λ2=-1.
∴λ1+λ2=-2-(+)=-2=-2+=.
(2)当m=0时,A(1,),B(1,),D(4,),E(4,).
∵ABED为矩形,∴N(,0).
当m≠0时,D(4,y1),E(4,y2),∵=(-x1,-y1),=(,y2),
由(-x1)y2+y1=(-my1-1)y2+y1=(y1+y2)-my1y2=+=0.
∴∥,即A、N、E三点共线.
同理可证,B、N、D三点共线.综上,对任意m,直线AE、BD相交于定点N(,0).
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
S△CMN |
S△CAB |
1 |
4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
3 |
a2+1 |
2 |
AN |
NE |
查看答案和解析>>
科目:高中数学 来源:山东省淄博市2010届高三第二次模拟考试数学理科 题型:044
(理科)如图,已知直线l:my+1过椭圆C:=1的右焦点F,抛物线:x2=4y的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且,当m变化时,探求λ1+λ2的值是否为定值?若是,求出λ1+λ2的值,否则,说明理由;
(Ⅲ)连接AE、BD,试探索当m变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com