精英家教网 > 高中数学 > 题目详情
18.已知函数y=f(x+2)为偶函数,且函数y=f(x)关于点(1,0)中心对称,当x∈(0,1)时,f(x)=2x-1,则f(log224)=$\frac{1}{2}$.

分析 利用函数y=f(x+2)为偶函数,可得函数的周期性,利用当x∈(0,1)时,f(x)=2x-1,即可求出f(log224).

解答 解:∵函数y=f(x+2)为偶函数,
∴f(-x+2)=f(x+2),
∴f(x+4)=f(-x),
∵函数y=f(x)关于点(1,0)中心对称,
∴f(-x)=-f(x+2),
∴f(x+4)=-f(x+2),
∴f(x+2)=-f(x),
∴f(x+4)=f(x),
∴函数的周期为4,
∵当x∈(0,1)时,f(x)=2x-1
∴f(log224)=f(log224-4)=f(log2$\frac{3}{2}$)=${2}^{lo{g}_{2}\frac{3}{2}}$-1=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数的奇偶性、周期性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,点Q($\frac{a^2}{{\sqrt{{a^2}-{b^2}}}}$,0)在直线l:x=2上.
(1)求椭圆C的标准方程;
(2)若O为坐标原点,P为直线l上一动点,过点P作直线l′与椭圆相切于点A,求△POA面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x+1)lnx,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数据x1,x2,…xn的平均数为$\overline{x}$,方差为S2,则数据3x1-1,3x2-1,…3xn-1的方差是(  )
A.S2B.3S2C.9S2D.9S2-6S+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简:$\frac{sin(π-α)}{tan(π+α)}•\frac{tan(2π-α)}{cos(π-α)}•\frac{cos(2π-α)}{sin(π+α)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l1、经过点A(a,a),B(1,0),直线l2经过点C(2a,1),D(-3,a),是否存在实数a,使l1∥l2?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow a$=(5,3),$\overrightarrow b$=(-2,t),若$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则实数t的取值范围是(-∞,-$\frac{6}{5}$)∪($-\frac{6}{5}$,$\frac{10}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,若sinA:sinB:sinC=3:5:7,则△ABC的形状是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a,b∈R,若a-|b|>0,则下列不等式中正确的是(  )
A.b>aB.a3+b3<0C.a2-b2<0D.b+a>0

查看答案和解析>>

同步练习册答案