精英家教网 > 高中数学 > 题目详情
某同学在一次研究性学习中发现,以下四个不等式都是正确的:
①(12+42)(92+52)≥(1×9+4×5)2
②[(-6)2)+82]×(22+122)≥[(-6)×2+8×12]2
③[(6.5)2+(8.2)2]×[(2.5)2+(12.5)2]≥[(6.5)×(2.5)+(8.2)×(12.5)]2
④(202+102)(1022+72)≥(20×102+10×7)2
请你观察这四个不等式:
(Ⅰ)猜想出一个一般性的结论(用字母表示);
(Ⅱ)证明你的结论.
分析:寻找使不等式成立的充分条件,直到使不等式成立的充分条件已经显然具备为止.
解答:解:(Ⅰ)观察所给的4个等式,猜想出一个一般性的结论(用字母表示):(a2+b2)(c2+d2)≥(ac+bd)2,( a,b,c,d∈R )
(Ⅱ)证明:要证 (a2+b2)(c2+d2)≥(ac+bd)2
只要证 a2•c2+a2d2+b2c2+b2d2≥a2c2+b2d2+2abcd,
只要证 a2d2-2abcd+b2c2≥0,
只要证 (ad-bc)2≥0.
而 (ad-bc)2≥0显然成立,故要证的不等式成立.
点评:本题主要考查用分析法证明不等式,关键是寻找使不等式成立的充分条件,直到使不等式成立的充分条件已经显然具备为止,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在一次研究性学习中发现,以下三个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
请将该同学的发现推广为一般规律的等式
sin2θ+cos2(300-θ)-sinθcos(30°-θ)=
3
4
sin2θ+cos2(300-θ)-sinθcos(30°-θ)=
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin2(-18°)+cos248°-sin(-18°)cos48°
(I)试从上述三个式子中选择一个,求出这个常数;
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高三上学期第一次月考文科数学试卷(解析版) 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.

.

(1)从上述五个式子中选择一个,求出常数

(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.

 

查看答案和解析>>

同步练习册答案