精英家教网 > 高中数学 > 题目详情
已知集合A={a1,a2…an}(0≤a1<a2<…<an,n∈N*,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),ai+aj与aj-ai至少一个属于A,
(1)分别判断集合M={0,2,4}与N=(1,2,3)是否具有性质P,并说明理由;
(2)①求证:0∈A;②当n=3时,集合A中元素a1、a2、a3是否一定成等差数列,若是,请证明;若不是,请说明理由;
(3)对于集合A中元素a1、a2、…an,若an=2012,求数列{an}的前n项和Sn(用n表示).
【答案】分析:(1)根据题意分别把集合M和N中的元素代入:ai+aj与aj-ai进行验证,可判断是否具有性质P;
(2)①根据a1、a2、…an的大小关系和性质P,可得an+an=2an>an,则an-an=0=a1∈A,
②由a1、a2、a3的大小关系和由性质P判断出:a1=a3-a3=0∈A,a3-a2=a2,即得2a2=a1+a3,故结论得证;
(3)由a1、a2、…an的关系和性质P,可求出元素a1、a2、…an的表达式,再代入所求的前n项和Sn进行化简得,代入an=2012求出Sn
解答:解:(1)由题意得,
对于集合M:得2-0=2,4-2=2,4-0=4,0-0=2-2=4-4=0,
∵2,4,0∈M,∴集合具有性质P.
对于集合N:得2+2=4,2-2=0,
∵4,0∉N,∴集合N不具性质P,
(2)证明:①∵0≤a1<a2<…<an,n∈N*,n≥3,
∴an+an=2an>an,则an-an=0=a1∈A,
②当n=3时,集合A中元素a1,a2,a3一定成等差数列.
证明:当n=3时,0≤a1<a2<a3
∴0≤a3-a3<a3-a2<a3-a1
且a3+a3>a3,∴a3+a3∉A,∴a3-a3=0∈A,∴a1=0∈A,
则a3+a2>a3,∴a3+a2∉A,∴a3-a2∈A,
∴a3-a2=a2,即a3=2a2,又∵a1=0,∴2a2=a1+a3
故a1,a2,a3成等差数列,
(3)由题意得,0≤a1<a2<…<an,∴0≤an-an<an-an-1<…<an-a1
∴an+an-i>an(i=1,2,…n-1),∴an-an-i∈A,
∴a1=an-an,a2=an-an-1,a3=an-an-2,…an=an-a1
∴Sn=a1+a2+…+an=nan-(a1+a2+…+an),即Sn=nan-Sn
则Sn===606n.
点评:本题考查了等差数列的证明,数列求和等综合问题,以及新定义的灵活应用能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A=a1,a2,…,an中的元素都是正整数,且a1<a2<…<an,对任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求证:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求证:n≤9;
(Ⅲ)对于n=9,试给出一个满足条件的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P=2,4,6,8,Q=2,4,8,16,分别求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求证:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,an}中的元素都是正整数,且a1<a2<…<an,对任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求证:
1
a1
-
1
an
n-1
36
;(提示:可先求证
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要证的结论.)
(2)求证:n≤11;
(3)对于n=11,试给出一个满足条件的集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的个数.
(1)设集合P={2,4,6,8},Q={2,4,8,16},分别求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)若集合A={2,4,8,16},则l(A)=
 

(Ⅱ)当n=108时,l(A)的最小值为
 

查看答案和解析>>

同步练习册答案