精英家教网 > 高中数学 > 题目详情

(本小题满分13分)(第一问8分,第二问5分)

已知函数f(x)=2lnxg(x)=ax2+3x.

(1)设直线x=1与曲线yf(x)和yg(x)分别相交于点PQ,且曲线yf(x)和yg(x)在点PQ处的切线平行,若方程f(x2+1)+g(x)=3xk有四个不同的实根,求实数k的取值范围;

(2)设函数F(x)满足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

 

【答案】

解:(1)f′(1)=2,且P(1,0),∴f(x)在P点处的切线方程为y=2(x-1),

即2xy-2=0…………………………………………………………………………(2分)

g′(1)=a+3,∴a=-1.…………………………………………………………(3分)

g(x)=-x2+3x,则方程f(x2+1)+g(x)=3xk可化为

ln(x2+1)-x2k.令y1=ln(x2+1)-x2,则x=-

=0得x=-1,0,1.因此y的变化情况如下表:

x

(-∞,-1)

-1

(-1,0)

0

(0,1)

1

(1,+∞)

0

0

0

y

极大值

极小值

极大值

且(y1)极大值=ln2-,(y1)极小值=0.……………………………………………………(6分)

又∵方程有四个不同实数根,函数y=ln(x2+1)-x2为偶函数,且当x2+1=e3(x>1)时,ln(x2+1)-x2=3-(e3-1)=e3<0=(y1)极小值,所以0<k<ln2-.……………………………………………………………………………………………(8分)

(2)∵F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.

F(x)=(a-3)x2-(a+3)x-1.………………………………………………………(9分)

①当a=3时,F(x)=-6x-1在(0,1]上是减函数,可知F(x)取不到最大值.

②当a<3时,F(x)的对称轴为x,若x∈(0,1]时,F(x)取得最大值.则>0解得a<-3或a>3,从而a<-3.

③当a>3时,若x∈(0,1]时,F(x)取得最大值,则时,此时a.

综上所述,存在实数a∈(-∞,-3),使得当x∈(0,1]时,F(x)取得最大值.……(13分)

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案