分析 通过数学归纳法证明即可.
解答 证明:下面用数学归纳法来证明:
①当n=1时,显然成立;
②假设当n=k(k≥2)时,ak=k,
则当n=k+1时,$\sum_{i=}^{k+1}$${{a}_{i}}^{3}$=1+23+33+…+k3+${{a}_{k+1}}^{3}$=$\frac{{k}^{2}(k+1)^{2}}{4}$+${{a}_{k+1}}^{3}$,
$(\sum_{i=1}^{k+1}{a}_{i})^{2}$=$[\frac{k(k+1)}{2}+{a}_{k+1}]^{2}$=$\frac{{k}^{2}(k+1)^{2}}{4}$+k(k+1)•ak+1+${{a}_{k+1}}^{2}$,
从而${{a}_{k+1}}^{3}$=k(k+1)•ak+1+${{a}_{k+1}}^{2}$,
整理得:ak+1[${{a}_{k+1}}^{2}$-ak+1-k(k+1)]=0,
解得:ak+1=k+1或ak+1=-k(舍)或ak+1=0(舍),
即当n=k+1时,命题成立;
由①、②可知,an=n.
点评 本题考查数学归纳法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | kπ+$\frac{π}{3}$(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x<1} | B. | {x|-2≤x≤1} | C. | {x|-2<x≤1} | D. | {x|x<-2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com