精英家教网 > 高中数学 > 题目详情
已知两点A(-2,0)、B(2,0),动点P满足kPA  •  kPB=-
1
4

(1)求动点P的轨迹E的方程;
(2)H是曲线E与y轴正半轴的交点,曲线E上是否存在两点M、N,使得△HMN是以H为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
(1)设点P的坐标为(x,y)(y≠0),则kPA=
y-0
x+2
kPB=
y-0
x-2

kPA  •  kPB=-
1
4
,∴
y
x+2
 •  
y
x-2
=-
1
4
,化简得
x2
4
+y2=1

∴动点P的轨迹E的方程为
x2
4
+y2=1
(y≠0).注:如果未说明y≠0,扣(1分).
(2)设能构成等腰直角三角形HMN,其中H为(0,1),
由题意可知,直角边HM,HN不可能垂直或平行于x轴,故可设HM所在直线的方程为y=kx+1,(不妨设k>0)
则HN所在直线的方程为y=-
1
k
x+1
,由
y=kx+1
x2+4y2=4
求得交点M(-
8k
1+4k2
-8k2
1+4k2
+1)
,(另一交点H(0,1))
|HM|=
(-
8k
1+4k2
)
2
+(-
8k2
1+4k2
)
2
=
8k
1+k2
1+4k2

-
1
k
代替上式中的k,得|HN|=
8
1+k2
4+k 2

由|HM|=|HN|,得k(4+k2)=1+4k2
∴k3-4k2+4k-1=0?(k-1)(k2-3k+1)=0,
解得:k=1或k=
5
2

当HM斜率k=1时,HN斜率-1;当HM斜率k=
3+
5
2
时,HN斜率
-3+
5
2
;当HM斜率k=
3-
5
2
时,HN斜率
-3-
5
2

综上述,符合条件的三角形有3个.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点A(-2,0),B(0,2),点C是圆x2+y2-4x+4y+6=0上任意一点,则点C到直线AB距离的最小值是
(  )
A、2
2
B、3
2
C、3
2
-2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-2,0),B(2,0),动点P在y轴上的射影是H,且
PA
PB
=2
PH2

(1)求动点P的轨迹C的方程(6分)
(2)已知过点B的直线l交曲线C于x轴下方不同的两点M,N,求直线l的斜率的取值范围(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•天门模拟)已知两点A(-2,0),B(0,2),点P是曲线C:
x=1+cosa
y=sina
上任意一点,则△ABP面积的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-2,0),B(2,0),直线AM、BM相交于点M,且这两条直线的斜率之积为-
3
4

(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆(x-1)2+y2=r20<r<
3
2
)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知两点A(2,0),B(3,4),直线ax-2y=0与线段AB交于点C,且C分
AB
所成的比λ=2,则实数a的值为(  )
A、-4B、4C、-2D、2

查看答案和解析>>

同步练习册答案