精英家教网 > 高中数学 > 题目详情
1.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知$sin(π+α)=\frac{1}{2}(π<α<\frac{3π}{2})$,求sinα-cosα的值.

分析 (1)利用特殊角的三角函数值以及三角函数的诱导公式化简求值即可.
(2)利用同角三角函数基本关系式以及角的范围化简求值即可.

解答 解:(1)原式=($\frac{\sqrt{3}}{2}$)2-1+1-cos230°-sin210°
=$\frac{3}{4}$-($\frac{\sqrt{3}}{2}$)2+sin30°=sin30°=$\frac{1}{2}$.
(2)∵$sin(π+α)=-sinα=\frac{1}{2}$即$sinα=-\frac{1}{2}$.
∴${cos^2}α=1-{({-\frac{1}{2}})^2}=\frac{3}{4}$.
又∵$π<α<\frac{3π}{2}$,
∴$cosα=-\frac{{\sqrt{3}}}{2}$.
∴$sinα-cosα=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}-1}}{2}$.

点评 本题考查了三角函数的化简求值,考查了三角函数的诱导公式的运用,考查了同角三角函数基本关系式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数$y=3sin({2x-\frac{π}{4}})$的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.$\int_0^2{[{x^2}+\sqrt{1-{{(x-1)}^2}}]dx=}$$\frac{8}{3}+\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy,圆C1和C2方程分别是C1:(x-2)2+y2=4和C2:x2+(y-1)2=1.以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=α与圆C1的交点为O,P,与圆C2的交点为O,Q,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.禇娇静老师在班级组织五一节抽奖活动,她有四个游戏盒,将它们水平放稳后,在上面仍一粒玻璃珠,若玻璃珠落在阴影部分,则可中奖,则中奖机会大的游戏盘是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$|{\overrightarrow a}|=4,|{\overrightarrow b}|=3,({2\overrightarrow a-3\overrightarrow b})({2\overrightarrow a+\overrightarrow b})=61$.
(1)求$|{\overrightarrow a+\overrightarrow b}|$;
(2)若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b$,求向量$\overrightarrow{BA}$在$\overrightarrow{BC}$上方向上的投影;
(3)已知$\overrightarrow a-\overrightarrow b$与$t\overrightarrow a+\overrightarrow b$成钝角,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.运行如图所示的程序框图,则输出结果为(  )
A.$\frac{11}{8}$B.$\frac{5}{4}$C.$\frac{3}{2}$D.$\frac{23}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列函数的导数;
(1)y=$\frac{sinx}{1+sinx}$;
(2)y=$\frac{1}{{1-\sqrt{x}}}+\frac{1}{{1+\sqrt{x}}}$,求f'(2)的值;
(3)y=2x+x2+22,求f'(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若${(x-2)^5}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+{a_4}{x^4}+{a_5}{x^5}$,则a1+a2+a3+a4+a5=(  )
A.-1B.-31C.-33D.31

查看答案和解析>>

同步练习册答案