精英家教网 > 高中数学 > 题目详情

在某校组织的一次篮球定点投篮训练中,规定每人最多投次;在处每投进一球得分,在处每投进一球得分;如果前两次得分之和超过分即停止投篮,否则投第三次.同学在处的命中率0,在处的命中率为,该同学选择先在处投一球,以后都在处投,用表示该同学投篮训练结束后所得的总分,其分布列为

          

         [来源:Zxxk.Com]

             

      

      

       [来源:学|科|网Z|X|X|K]

            [来源:学科网ZXXK]

          

                 

            

         

              

   (1)求的值;

   (2)求随机变量的数学期望;                         

   (3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

见解析


解析:

(1)表示三次均没有进球,

,解得.    (3分)

   (2),第一次不进球,第二次进球、第三次不进球,或者第二次不进球,第三次进球,

 

,第一次进球,后两次不进,[来源:学科网ZXXK]

,第一次不进球,后两次进球,

,第一次进球,后两次一次进球,.

故其期望.(8分)[来源:学科网ZXXK]

   (3)在B处投篮超分,前两次投中,第一、三次投中、第二、三次投中,这个概率为;采用上述方式超过3分的概率为,故该同学选择在B处投篮得分超过3分的概率大于采用上述方式得分超过3分的概率. (12分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为:
ξ 0 2   3 4 5
 p 0.03   0.24 0.01 0.48 0.24
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮.现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是
1
3
1
2
.两人共投篮3次,且第一次由甲开始投篮.假设每人每次投篮命中与否均互不影响.
(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;
(Ⅱ)若投篮命中一次得1分,否则得0分.用ξ表示甲的总得分,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南开区二模)在某校组织的一次篮球定点投篮测试中,规定每人最多投3次.每次投篮的结果相互独立.在A处每投进一球得3分,在B处每投进一球得2分,否则得0分.将学生得分逐次累加并用ξ表示,如果ξ的值不低于3分就认为通过测试,立即停止投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在A处投一球,以后都在B处投:方案2:都在B处投篮.甲同学在A处投篮的命中率为0.5,在B处投篮的命中率为0.8.
(1)当甲同学选择方案1时.
①求甲同学测试结束后所得总分等于4的概率:
②求甲同学测试结束后所得总分ξ的分布列和数学期望Eξ;
(2)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为
  ξ 0 2    3    4    5
        p 0.03    P1    P2 P3 P4
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每次投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q1为0.25,在B处的命中率为q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,ξ=0的概率为0.03.
(1)写出ξ值所有可能的值;
(2)求q2的值;
(3)求得到总分最大值的概率.

查看答案和解析>>

同步练习册答案