精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=ax3-bx+4,f(1)=7,则f(-1)=1.

分析 直接利用函数的解析式以及函数的奇偶性,求解函数值即可.

解答 解:函数f(x)=ax3-bx+4满足f(1)=7,
即:f(1)=a-b+4=7,a-b=3,
则f(-1)=-a+b+4=-3+4=1.
故答案为:1.

点评 本题考查函数的值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知数列{an}中.a1=$\frac{3}{5}$,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$,则数列{an}的通项公式为an=$\frac{3}{6n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知焦点在x轴上,长、短半轴之和为10,焦距为4$\sqrt{5}$,则椭圆的方程为(  )
A.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{36}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{4}$=1D.$\frac{{y}^{2}}{6}$+$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列的通项公式an=n(n-3),则180是它的第(  )项.
A.-12B.-15C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A、B、C是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的三点,其中A的坐标为(2$\sqrt{3}$,0),BC过椭圆E的中心,且椭圆长轴的一个端点与短轴的两个端点构成正三角形.
(1)求椭圆E的方程;
(2)当直线BC的斜率为1时,求△ABC面积;
(3)设直线l:y=kx+2与椭圆E交于两点P、Q,且线段PQ的中垂线过椭圆E与y轴负半轴的交点D,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.当$\sqrt{2-x}$有意义时,化简$\sqrt{{x}^{2}-4x+4}$-$\sqrt{{x}^{2}-6x+9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.证明:$\frac{sinx+1+cosx}{cosx+1-sinx}$=$\frac{1+sinx}{cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点B(1,0),椭圆上的点到两焦点的距离之和为4,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线${y^2}-\frac{x^2}{2}=1$的焦距是2$\sqrt{3}$,渐近线方程是$y=±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

同步练习册答案