精英家教网 > 高中数学 > 题目详情

若函数y=f(x)在R上单调递增,且f(m2)>f(-m),则实数m的取值范围是


  1. A.
    (-∞,-1)
  2. B.
    (0,+∞)
  3. C.
    (-1,0)
  4. D.
    (-∞,-1)∪(0,+∞)
D
分析:是抽象函数单调性的应用,借助于增函数函数值大,自变量也越大来求m的取值范围.
解答:∵y=f(x)在R上单调递增,
且f(m2)>f(-m),
∴m2>-m,
即m2+m>0.
解得m<-1或m>0,
即m∈(-∞,-1)∪(0,+∞).
故选 D.
点评:若函数y=f(x)单调递增,则f(x1)<f(x2)?x1<x2,把抽象函数问题转化为函数不等式或方程求解,但无论如何都必须在定义域给定的范围内进行.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知变量t,y满足关系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,变量t,x满足关系式t=ax,变量y,x满足函数关系式y=f(x).
(1)求函数y=f(x)表达式;
(2)若函数y=f(x)在[2a,3a]上具有单调性,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函数y=f(x)的单调区间;
(Ⅱ)若函数y=f(x)在[em,+∞)(m∈Z)上有零点,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2ax-3a.
(Ⅰ)若函数y=f(x)在(-∞,1)上是增函数,求实数a的取值范围;
(Ⅱ)当函数f(x)在[1,2]上的最大值为4时,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(2x)=x2-2ax+3
(1)求函数y=f(x)的解析式
(2)若函数y=f(x)在[
12
,8]上的最小值为-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)在(0,+∞)上的导函数为f′(x),且不等式xf′(x)>f(x)恒成立,又常数a,b满足a>b>0,则下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步练习册答案