【题目】已知函数f(x)=( )x的图象与函数y=g(x)的图象关于直线y=x对称.
(1)若f(g(x))=6﹣x2 , 求实数x的值;
(2)若函数y=g(f(x2))的定义域为[m,n](m≥0),值域为[2m,2n],求实数m,n的值;
(3)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a).
【答案】
(1)解:∵函数f(x)=( )x的图象与函数y=g(x)的图象关于直线y=x对称,
∴g(x)= ,
∵f(g(x))=6﹣x2,
∴ =6﹣x2=x,
即x2+x﹣6=0,
解得x=2或x=﹣3(舍去),
故x=2,
(2)解:y=g(f(x2))= =x2,
∵定义域为[m,n](m≥0),值域为[2m,2n],
,
解得m=0,n=2,
(3)解:令t=( )x,
∵x∈[﹣1,1],
∴t∈[ ,2],
则y=[f(x)]2﹣2af(x)+3等价为y=m(t)=t2﹣2at+3,
对称轴为t=a,
当a< 时,函数的最小值为h(a)=m( )= ﹣a;
当 ≤a≤2时,函数的最小值为h(a)=m(a)=3﹣a2;
当a>2时,函数的最小值为h(a)=m(2)=7﹣4a;
故h(a)=
【解析】(1)根据函数的对称性即可求出g(x),即可得到f(g(x))=x,解得即可.(2)先求出函数的解析式,得到 ,解得m=0,n=2,(3)由x∈[﹣1,1]可得t∈[ ,2],结合二次函数的图象和性质,对a进行分类讨论,即可得到函数y=f2(x)﹣2af(x)+3的最小值h(a)的表达式.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)当x∈(0,π)时,求f(x)的单调递减区间;
(Ⅱ)若f(x)在[0,θ]上的值域为[0,2 +1],求cos2θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数y=log2(2x+1)的图象,只需将y=1+log2x的图象( )
A.向左移动 个单位
B.向右移动 个单位
C.向左移动1个单位
D.向右移动1个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=2,a2=6,且数列{an﹣1﹣an}{n∈N*}是公差为2的等差数列.
(1)求{an}的通项公式;
(2)记数列{ }的前n项和为Sn , 求满足不等式Sn> 的n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1 , y1)、B(x2 , y2)两点间的“直角距离”为:D(AB)=|x1﹣x2|+|y1﹣y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足D(PO)≤1的点P所组成的集合,
点集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},
求集合Q={(x,y)|x=x1+x2 , y=y1+y2 , (x1 , y1)∈A,(x2 , y2)∈B}所表示的区域的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,AB=2,点E是BC的中点.
(1)求线段DE的长;
(2)求直线A1E与平面ADD1A1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知锐角△ABC的三内角A,B,C所对的边分别是a,b,c,且2csinB= b.
(1)求角C的大小;
(2)若边c=1,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (e为自然对数的底数,e=2.71828…).
(1)证明:函数f(x)为奇函数;
(2)判断并证明函数f(x)的单调性,再根据结论确定f(m2﹣m+1)+f(﹣ )与0的大小关系;
(3)是否存在实数k,使得函数f(x)在定义域[a,b]上的值域为[kea , keb].若存在,求出实数k的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com