精英家教网 > 高中数学 > 题目详情

四棱锥P-ABCD中,底面ABCD为菱形,且∠BAD=60°,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点.
(1)求证:BG⊥面PAD;
(2)E是BC的中点,在PC上求一点F,使得PG∥面DEF.

证明:(1)连接BD,因为四边形ABCD为菱形,且∠BAD=60°,
所以三角形ABD为正三角形,又因为点G为AD的中点,所以BG⊥AD
因为面PAD⊥底面ABCD,且面PAD∩底面ABCD=AD,
所以BG⊥面PAD.
(2)解:当点F为PC的中点时,PG∥面DEF
连接GC交DE于点H
因为E、G分别为菱形ABCD的边BC、AD的中点,所以四边形DGEC为平行四边形
所以点H为DE的中点,又点F为PC的中点
所以FH时三角形PGC的中位线,所以PG∥FH
因为FH?面DEF,PG不属于面DEF
所以PG∥面DEF.
综上:当点F为PC的中点时,PG∥面DEF
分析:(1)连接BD,证明BG⊥AD,因为面PAD⊥底面ABCD,且面PAD∩底面ABCD=AD,即可证明BG⊥面PAD;
(2)E是BC的中点,点F为PC的中点时,连接GC交DE于点H,证明PG平行面DEF内的直线FH,即可证明PG∥面DEF.
点评:本题考查直线与平面垂直的判定,直线与平面平行,考查学生空间想象能力,逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PD、PC、BC的中点.
(I)求证:PA∥平面EFG;
(II)求平面EFG⊥平面PAD;
(III)若M是线段CD上一点,求三棱锥M-EFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•上海)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2
2
,PA=2,求:
(1)三角形PCD的面积;
(2)异面直线BC与AE所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,且AD∥BC,∠ABC=∠PAD=90°,侧面PAD⊥底面ABCD,若PA=AB=BC=
12
,AD=1.
(I)求证:CD⊥平面PAC
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,M为AB的中点.
(1)求证:BC∥平面PMD;
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,其中PA=PD=AD=2,∠BAD=60°,Q为AD的中点.
(1)求证:PA∥平面MDB;
(2)求证:AD⊥平面PQB;
(3)若平面PAD⊥平面ABCD,且M为PC的中点,求四棱锥M-ABCD的体积.

查看答案和解析>>

同步练习册答案