精英家教网 > 高中数学 > 题目详情
一只球放在桌面上,桌面上一点A的正上方有一点光源O,OA与球相切,让A在桌面上运动,OA始终与球相切,OA形成一个轴截面顶角为45°的圆锥,则点A的轨迹椭圆的离心率为
2
-1
2
-1
分析:根据圆曲线的第一定义,作出过圆锥的轴与椭圆长轴AA′的截面,可得等腰直角三角形AOA′,在此三角形中利用切线长定理,可以求出焦点到长轴顶点距离AF与AA′的关系式,再根据椭圆的几何性质,化为关于椭圆的参数a、c的等量关系,即可求出椭圆的离心率.
解答:解:如图是过圆锥的轴与椭圆长轴AA′的截面,根据圆锥曲线的定义,
可得球与长轴AA′的切点是椭圆的焦点F,OA⊥AA′
设光线OA与球相切于点E,OA′与球相切于点D
∵等腰直角三角形AOA′中,OA=AA′=
2
2
OA/
∴AF=AE=
1
2
(OA+AA′-OA′)=AA′-
2
2
AA′=(1-
2
2
)AA′
根据椭圆的几何性质,得长轴AA′=2a,
AF是焦点到长轴顶点的距离AF=a-c
代入到上式,得a-c=(1-
2
2
)•2a⇒
c
a
=
2
-1

所以所求椭圆的离心率为
2
-1

故答案为:
2
-1
点评:本题以空间的圆锥为载体,考查了圆锥曲线的形成过程,同时考查了椭圆的基本量,属于中档题.深刻理解空间位置关系和椭圆的定义与性质,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

一只球放在桌面上,桌面上一点A的正上方有一点光源O,OA与球相切,让A在桌面上运动,OA始终与球相切,OA形成一个轴截面顶角为45°的圆锥,则点A的轨迹椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

一只球放在桌面上,桌面上一点A的正上方有一点光源O,OA与球相切,让A在桌面上运动,OA始终与球相切,OA形成一个轴截面顶角为45°的圆锥,则点A的轨迹——椭圆的离心率为___________.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省扬州中学高二(上)期中数学试卷(解析版) 题型:填空题

一只球放在桌面上,桌面上一点A的正上方有一点光源O,OA与球相切,让A在桌面上运动,OA始终与球相切,OA形成一个轴截面顶角为45°的圆锥,则点A的轨迹椭圆的离心率为   

查看答案和解析>>

科目:高中数学 来源:2008年江苏省扬州中学高考数学四模试卷(解析版) 题型:解答题

一只球放在桌面上,桌面上一点A的正上方有一点光源O,OA与球相切,让A在桌面上运动,OA始终与球相切,OA形成一个轴截面顶角为45°的圆锥,则点A的轨迹椭圆的离心率为   

查看答案和解析>>

同步练习册答案