精英家教网 > 高中数学 > 题目详情
如图:椭圆
x2
2
+y2=1
,其准线与x轴交点为D,一直线过右焦点F与椭圆交于A,B两点,当△ABD面积为
2
3
时,求直线AB的方程.
分析:设直线AB的方程为x=ty+1,A(x1,y1),B(x2,y2),由
x2
2
+y2=1
x=ty+1
,得(t2+2)y2+2ty-1=0
,由此能求出直线AB的方程.
解答:解:易得椭圆右焦点F的坐标(1,0),
点D的坐标为(2,0),
故|FD|=1.
显示直线AB与x轴不重合,
故设直线AB的方程为x=ty+1,
A(x1,y1),B(x2,y2),
x2
2
+y2=1
x=ty+1
,得(t2+2)y2+2ty-1=0

于是|y1-y2|=
|t2+2|
=
2
2t2+2
t2+2

所以S△ABD=
1
2
•|FD|•|y1-y2|=
2t2+2
t2+2
=
2
3

整理得2t4-t2-1=0,
解得t2=1或t2=-
1
2
(舍去),
故t=1或t=-1.
所以直线AB的方程为x-y-1=0或x+y-1=0.
点评:本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A、B.
(1)若△AOB的面积等于
2
3
,求直线l的方程;
(2)设△AOB的面积为S,且满足
6
4
≤S≤
2
6
7
,求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知圆O:x2+y2=1,直线l:y=kx+b(k>0,b>0)是圆的一条切线,且l与椭圆
x2
2
+y2=1
交于不同的两点A,B.
(1)若弦AB的长为
4
3
,求直线l的方程;
(2)当直线l满足条件(1)时,求
OA
OB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知M(m,m2)、N(n,n2)是抛物线C:y=x2上两个不同点,且m2+n2=1,m+n≠0,直线l是线段MN的垂直平分线.设椭圆E的方程为
x2
2
+
y2
a
=1(a>0,a≠2)

(Ⅰ)当M、N在抛物线C上移动时,求直线L斜率k的取值范围;
(Ⅱ)已知直线L与抛物线C交于A、B、两个不同点,L与椭圆E交于P、Q两个不同点,设AB中点为R,OP中点为S,若
OR
OS
=0
,求椭圆E离心率的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=
4
9
,直线l:y=kx+m与椭圆C:
x2
2
+y2=1
相交于P、Q两点,O为原点.
(Ⅰ)若直线l过椭圆C的左焦点,且与圆O交于A、B两点,且∠AOB=60°,求直线l的方程;
(Ⅱ)如图,若△POQ重心恰好在圆上,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴一模)已知椭圆C:
x22
+y2=1
的左、右焦点分别为F1,F2,O为原点.
(Ⅰ)如图①,点M为椭圆C上的一点,N是MF1的中点,且NF2丄MF1,求点M到y轴的距离;
(Ⅱ)如图②,直线l:y=k+m与椭圆C上相交于P,G两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.

查看答案和解析>>

同步练习册答案