精英家教网 > 高中数学 > 题目详情
求函数y=-lg2x+6lgx的定义域和值域.
考点:函数的定义域及其求法,函数的值域
专题:函数的性质及应用
分析:根据对数式的真数大于0,可得函数的定义域,令t=lgx,结合二次函数的图象和性质,可得函数的值域.
解答: 解:函数y=-lg2x+6lgx的定义域为(0,+∞),
令t=lgx,
则y=-t2+6t=-(t-3)2+9≤9,
故函数y=-lg2x+6lgx的值域为:(-∞,9]
点评:本题考查的知识点是函数的定义域,值域,二次函数的图象和性质,对数函数的图象和性质,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
17
13
,则sinα•cosα的值为(  )
A、
60
169
B、-
60
169
C、
60
196
D、-
60
196

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3

(1)证明:A1C⊥平面AB1C1
(2)若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1
(3)求三棱锥A1-AB1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆(x-1)2+y2=4与直线x+y+1=0相交于A,B两点,则弦|AB|的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x0,y0) 在椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:
x0x
a2
+
y0y
b2
=1

根据以上性质,解决以下问题:
已知椭圆L:
x2
16
+
y2
9
=1
,若Q(u,v)是椭圆L外一点(其中u,v为定值),经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点O和点F分别为椭圆
x2
9
+
y2
8
=1的中心和左焦点,点P为椭圆上的任意一点,则
OF
FP
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下表提供了某新生婴儿成长过程中时间x(月)与相应的体重y(公斤)的几组对照数据.
 x0123
 y33.54.55
(1)如y与x具有较好的线性关系,请根据表中提供的数据,求出线性回归方程:
?
y
=bx+a;
(2)由此推测当婴儿生长到五个月时的体重为多少?
参考公式:a=
.
y
-b
.
x
,b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(x+4)=f(x-2),则f(3)的值为(  )
A、
1
2
B、0
C、3
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生在上学途中要经过4个路口,假设在各路口遇到红灯的概率都是
1
4
,且是否遇到红灯是相互独立的,遇到红灯时停留的时间都是2min.
(1)求这名学生到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学途中因遇到红灯停留的总时间X的数学期望.

查看答案和解析>>

同步练习册答案