精英家教网 > 高中数学 > 题目详情
当θ取遍所有值时,直线x•cosθ+y•sinθ=4+
2
sin(θ+
π
4
)
所围成的图形面积为
 
分析:根据题意可知,顶点(1,1)到直线的距离为4,所以当θ取遍所有值时,直线x•cosθ+y•sinθ=4+
2
sin(θ+
π
4
)
所围成的图形为圆心坐标(1,1),半径为4的圆,所以求出面积即可.
解答:解:设点A(a,b),则点A得到直线x•cosθ+y•sinθ=4+
2
sin(θ+
π
4
)
的距离为d
则d=
|(a-1)cosθ+(b-1)sinθ-4|
sin2θ+cos2θ 
,当a=1,b=1时,d=4.根据直线与圆相切时,圆心到直线的距离等于半径得:
这些直线所围成的图形为以(1,1)为圆心,4为半径的圆,所以面积为16π
故答案为16π
点评:考查学生会利用取特值法得到直线所围成的平面图形的形状,掌握直线与圆相切时,圆心到直线的距离等于半径,灵活运用点到直线的距离公式求值的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

取遍所有值时,直线所围成的图形面积为         ;

查看答案和解析>>

科目:高中数学 来源:江苏省2010年高考预测试题数学 题型:填空题

取遍所有值时,直线所围成的图形面积为

              

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省连云港市东海高级中学高考数学考前猜题试卷(3)(解析版) 题型:解答题

当θ取遍所有值时,直线所围成的图形面积为    

查看答案和解析>>

科目:高中数学 来源:2010年江苏省镇江市丹阳市高考数学模拟试卷(一)(解析版) 题型:解答题

当θ取遍所有值时,直线所围成的图形面积为    

查看答案和解析>>

同步练习册答案