精英家教网 > 高中数学 > 题目详情
2.将y=sin(2x-$\frac{π}{3}$)的图象平移φ个单位后图象关于x=$\frac{π}{3}$对称,则|φ|的最小值=$\frac{π}{12}$.

分析 根据左加右减,写出三角函数平移后的解析式,根据平移后图象的对称轴,把对称轴代入使得函数式的值等于±1,写出自变量的值,根据求最小值得到结果.

解答 解:∵把函数y=sin(2x-$\frac{π}{3}$)的图象平移φ个单位,
∴平移后函数的解析式是y=sin[2(x±φ)-$\frac{π}{3}$]=sin(2x±2φ-$\frac{π}{3}$),
∵所得图象关于直线 x=$\frac{π}{3}$对称,
∴y=sin(2×$\frac{π}{3}$±2φ-$\frac{π}{3}$)=±1,
∴2×$\frac{π}{3}$±2φ-$\frac{π}{3}$=kπ+$\frac{π}{2}$(k∈Z).
∴±φ=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z.
∴|φ|的最小值=$\frac{π}{12}$.
故答案为:$\frac{π}{12}$.

点评 本题考查由三角函数图象的平移求函数的解析式,本题解题的关键是先表示出函数的解析式,再根据题意来写出结果,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{8}$=1,过点M(1,1)的直线与椭圆相交于A、B两点,若M为弦AB的中点,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=lg(ax2-4a+1),0<a<$\frac{1}{4}$,则关于x的不等式(x-1)f(x)<0的解集为(  )
A.(-∞,-2)∪(1,2)B.(-2,-1)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\frac{2x}{1+{x}^{2}}$,关于x的方程(f(x))2+af(x)+b=0(a,b∈R)有如下几个判断:
(1)存在实数a,b,使此方程无实数解;
(2)存在实数a,b,使此方程有2个不同的实数解;
(3)存在实数a,b,使此方程有4个不同的实数解;
(4)存在实数a,b,使此方程有6个不同的实数解;
其中正确的判断个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的图象平移φ个单位后函数图象关于y轴对称,则|φ|的最小值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=2n+1-2,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数{an}满足bn=$\frac{{S}_{n}}{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在一张纸上画一个圆,圆心为O,半径为R,并在圆O外设置一个定点F,折叠纸片使圆周上某一点M与F重合,抹平纸片得一折痕AB,连结MO并延长交AB于点P,当点M在圆O上运动时,直线AB与P点轨迹的公共点的个数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F,A分别为双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,右顶点,过F作x轴的垂线,在第一象限与双曲线交于点P,AP的延长线与双曲线的渐近线在第一象限交与点Q,若向量$\overrightarrow{AP}$=(2-$\sqrt{2}$)向量$\overrightarrow{AQ}$,则双曲线的离心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设命题p:在直角坐标平面内,点M(sinα,cosα)与N(|α+1|,|α-2|)(α∈R)在直线x+y-2=0的异侧;命题q:若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角.以下结论正确的是(  )
A.“p∨q”为真,“p∧q”为真B.“p∨q”为假,“p∧q”为真”
C.“p∨q”为真,“p∧q”为假”D.“p∨q”为假,“p∧q”为假

查看答案和解析>>

同步练习册答案