精英家教网 > 高中数学 > 题目详情
(2012•嘉定区三模)已知随机变量ξ的分布列如表所示:
x -1 0 1 2
P(ξ=x) a b c
1
12
若Eξ=0,Dξ=1,则b=
1
4
1
4
分析:由分布列的性质和期望方差的定义可得a+b+c+
1
12
=1,①-a+c+
1
6
=0,②a+c+
1
3
=1,③联立解方程组可得.
解答:解:由分布列的性质可得a+b+c+
1
12
=1,①
又可得Eξ=-a+c+
1
12
=-a+c+
1
6
=0,②
Dξ=(-1-0)2a+(0-0)2b+(1-0)2c+(2-0)2×
1
12
=1,
化简可得:a+c+
1
3
=1,③
联立②③可解得
a=
5
12
c=
1
4
,代入①可得b=
1
4

故答案为:
1
4
点评:本题考查离散型随机变量的期望与方程,涉及分布列的性质的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•嘉定区三模)已知动圆圆心在抛物线y2=4x上,且动圆恒与直线x=-1相切,则此动圆必过定点
(1,0)
(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)在直角坐标系xOy中,直线l的参数方程是
x=t
y=
3
t
(l为参数),以Ox的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ,则圆C上的点到直线l距离的最大值是
3
2
+1
3
2
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设集合A={x|x<1,x∈R},B={x|x2<4,x∈R},则A∩B=
{x|-2<x<1}
{x|-2<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•嘉定区三模)设a、b∈R,i为虚数单位,若(a+i)i=b+i,则复数z=a+bi的模为
2
2

查看答案和解析>>

同步练习册答案