精英家教网 > 高中数学 > 题目详情
命题“任意x∈R,都有x2≥0”的否定为
 
分析:根据全称命题的否定是特称命题即可得到命题的否定.
解答:解:∵全称命题的否定是特称命题,
∴命题“任意x∈R,都有x2≥0”的否定为:“存在x∈R,有x2<0”.
故答案为:“存在x∈R,有x2<0”.
点评:本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题即可得到结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“存在x∈R,使得x2+2x+5=0”的否定是
对任意x∈R,都有x2+2x+5≠0
对任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个命题:
①y=cos(x-
π
4
)cos(x+
π
4
)的图象中相邻两个对称中心的距离为π;
②y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实根,则a=-1
④命题P:对任意x∈R,都有sinx≤1;则¬p:存在x∈R,使得sinx>1;
⑤函数y=3x+3-x(x<0)的最小值为2.其中真命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是R上的偶函数,对任意x∈R,都有f(x+4)=f(x)+f(2)成立,当x1,x2∈[0,2]且x1≠x2时,都有
f(x2)-f(x1)
x2-x1
>0.给出下列命题:
①f(2)=0且T=4是函数f(x)的一个周期;
②直线x=4是函数y=f(x)的一条对称轴;
③函数y=f(x)在[-6,-4]上是增函数;
④函数y=f(x)在[-6,6]上有四个零点.
其中正确命题的序号为(  )

查看答案和解析>>

同步练习册答案